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Abstract

This chapter describes what electronic excited states are and why they are important to study and
therefore motivates the need for theoretical tools able to characterize them. Further and most impor-
tantly, in this introductory chapter, we put together in a comprehensive manner a collection of basic
concepts that might be needed, depending on the background of the reader, to understand the remaining
chapters of this book.

1.1 Mission and Motivation

When a photon of light strikes a molecule, the latter’s electrons are promoted from the electronic
ground state to higher electronic levels. Typically, the electronic ground state of a molecule is a
singlet state, but depending on the number of electrons and their most favorable way of pairing, it
can be a doublet, a triplet, or a state of higher multiplicity. Assuming the electronic ground state
is a singlet, upon light absorption the molecule will be excited to another singlet state, as high
in energy as the energy contained in the photon allows. Once excited, a number of radiative and
non-radiative decay processes are possible. These are collected in the Jabłoński diagram shown in
Figure 1.1(a), which assumes an electronic singlet ground state.

Radiative processes include fluorescence or phosphorescence, depending on whether the emis-
sion of light involves a transition between two states of the same multiplicity, for example from the
lowest singlet S1 to the S0, or involves a change of spin, as shown in Figure 1.1, from the triplet T1
to the S0. Typically, as in the example depicted, the emitted light has a longer wavelength than the
absorbed radiation because luminescence occurs from lower energy levels, and thus absorption and
emission spectra are easy to identify from experimental data. In this example, the molecule returns
to the original ground state from where it started and thus there was no photochemical reaction,
one would say that a photophysical process has taken place.

Non-radiative processes can be much more complicated to observe experimentally, as they typi-
cally involve not only the bright or absorbing state defined by the wavelength employed to irradiate,
but also dark states, i.e., states that do not have a significant oscillator strength but are populated
from the bright states. A transition between electronic states of the same multiplicity is known as
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Figure 1.1 (a) Jabłoński diagram with levels. After absorption of a photon with energy h𝜈, different
processes can occur: radiative processes are fluorescence (F) and phosphorescence (P), non-radiative
processes are internal conversion (IC) and intersystem crossing (ISC). (b) Jabłoński diagram with potential
energy surfaces.

internal conversion, e.g., from S2 to S1. When two states of different multiplicities are involved, e.g.,
from the S1 to T1, one speaks of intersystem crossing.

The electronic levels of a molecule are defined through potential energy surfaces (PES) that
extend along 3N − 6 dimensions (with N the number of atoms contained in the molecule). PES are
the direct consequence of invoking the Born–Oppenheimer approximation (BOA), see section 1.7.
As comfortable as it might seem for a chemist to employ electronic states to envision the course
of a chemical reaction from a reactant to a product, sticking to the BOA when talking about elec-
tronic excited states implies that the coupling between different PES is neglected. However, these
so-called non-adiabatic couplings between PES are the “salt and pepper” of photochemistry, as they
are essential to understand which states and geometrical conformations are populated after excita-
tion. One key concept in this respect is the non-adiabatic transition around a conical intersection, see
section 1.9. Named after the ideal topology two PES adopt when they intersect (see Figure 1.1(b)),
a conical intersection is the molecular funnel that allows for internal conversion, and it can also
be seen as the transition state in photochemistry, which connects a reactant with a product. Like-
wise, intersystem crossing is mediated by spin–orbit coupling, which is another form of vibronic
or non-adiabatic coupling between electronic levels.

Figure 1.1(b) summarizes the radiative and non-radiative processes described before, now in
terms of PES. If after the detour via the different PES, the molecule ends up at a different geomet-
rical configuration from which it started after irradiation, one speaks of a photochemical reaction;
if instead, it returns back to the electronic ground state of the reactant, the term photophysics is
employed.

Be it photophysics or photochemistry, light-induced processes are all around us. As Ciamician
already recognized in 19121, “reactions caused by light are so many, that it should not be diffi-
cult to find some of practical value”. Indeed, just to give one representative example, the dream
of using solar fuel to produce sustainable energy is keeping many scientists around the world
busy. In an effort to mimic natural photosynthesis, one needs among others, to design efficient
antenna complexes able to harvest the broad solar spectrum and direct the electrons towards the
catalytic centers. This design requires a profound understanding of the underlying processes that
take place in the molecules after light excitation. Theoretical modeling can help explain existing
experiments and hopefully guide new ones. Which are the electronic states that are populated after

1 Giacomo Ciamician, “The photochemistry of the future”, Science 36 (1912) 385–394.
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excitation? How does the molecule evolve along the complicated PES associated to these electronic
states? Often these two simple questions are not easy to answer. They imply a need to get an
accurate solution of two key equations, the electronic time-independent Schrödinger equation and
the time-dependent Schrödinger equation. Both equations are challenging to solve, except for very
small molecules, and so approximations and numerical strategies are required. The solution of the
first equation is the goal of electronic structure theory and the solution of the second, the target of
chemical dynamics. Both fields have tremendously evolved in the last decades, with the emergence
of many different methods that have a common objective.

The mission of this book is to keep up-to-date with the recent development in these two inter-
twined fields, setting the focus at solving electronic excited states and following their time evo-
lution. Accordingly, Part I collects the most important electronic structure methods that can be
used nowadays to calculate electronic excited states as well as associated PES and other electronic
properties. Part II, in turn, covers the state of the art for solving molecular motion in the elec-
tronic excited states. The variety and extension of the methods collected in this book speaks for
itself about how much progress has been achieved in this branch of theoretical chemistry, which
undoubtedly has also massively profited in the last years from enormous advances in computational
resources. It would not be fair, however, to pretend that theoretical photochemistry has reached its
cusp. A deeper reading of the chapters will reveal to the reader not only how far we have come but
also how much still remains to be done.

In an effort to make the contents of this book accessible to undergraduates and newcomers to
the field, the rest of this chapter contains a number of basic concepts to ease the reading. All the
chapters have been written in a fully consistent manner, so as to allow them to be studied inde-
pendently from the others. The chapters are, nevertheless, organized such that they try to reflect
a natural progression. In this respect, the chapters are grouped in two sections consisting of Part I
and Part II – electronic structure theory and methods for molecular dynamics, respectively.

In the electronic structure section the selected order of the chapters tries, to some extent, to be in
the order of sophistication. However, in some cases chapters are clustered together because of com-
mon grounds or methodology. In that sense, Part I starts with the chapters based on density func-
tional theory (DFT) – the chapters on time-dependent DFT (TD-DFT) and multi-configurational
DFT (MC-DFT). This is followed by chapters revolving around equation-of-motion coupled cluster
theory (EOM-CC) and the algebraic-diagrammatic construction (ADC) scheme for the polarization
propagator, which are grouped together due to the technical similarities of the methods. Finally,
five chapters are grouped together based on the use of a configurational interaction (CI) type of
wave function. Initially, the basics of the so-called complete active space SCF (CASSCF) and related
methods – the foundation of multi-configurational quantum chemistry – is introduced. This is
followed by two chapters on techniques describing how to solve the associated equations – the
chapters on density matrix renormalization group (DMRG) and the quantum Monte-Carlo (QMC)
approaches. To conclude Part I, two chapters about the inclusion of electronic dynamical corre-
lation follow – the chapters on the multi-reference configuration interaction (MRCI) method and
the multi-configurational reference perturbation theory (MRPT). A pictorial summary of the meth-
ods described is provided in Figure 1.2. Starting from Hartree–Fock (HF), different methods cover
different degrees of dynamic and static correlation, all the way to the exact full-CI (FCI).

Part II, dealing with the time evolution of nuclear configurations, starts with three chapters
that can be considered within the realm of quantum dynamics. The first one introduces the
time-dependent Schrödinger equation and how to solve it exactly in a grid – what is known as
wave packet dynamics. Due to the cost of obtaining PES, wave packet dynamics is typically done
in reduced dimensionality. The multi-configuration time-dependent Hartree (MCTDH) family of
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Figure 1.2 Scheme of quantum chemical methods for electronic structure. The lower left corner contains
the most basic ab initio method, Hartree–Fock (HF), while the exact solution of the time-independent
Schrödinger equation, full configuration interaction (FCI), lies, mostly unreachable, on the upper right
corner. A panoply of methods described in Part I of this book, identified by their acronyms, try to “correct”
HF, adding the missing electronic correlation and thus approximating the ideal FCI. The methods are
arranged, qualitatively, based on their algorithmic relations and their prioritization of so-called static or
dynamic correlation, which ultimately lead to the same end point.

methods is presented next, as a method that can alleviate in part the cost of grid-based wave packet
methodologies. This chapter ends, bridging with the next block of four chapters that are based on
quantum-mechanical and quantum-classical methods using on-the-fly computation of PES. These
chapters are arranged in sort of going from more to less “quantum” – direct dynamics variational
multi-configurational Gaussian (DD-vMCG) method, full and ab initio multiple spawning (FMS
and AIMS), Ehrenfest methods, and surface hopping (SH). The next four chapters are based on
alternative formulations of quantum dynamics. Exact factorization is based on an alternative way
to express the electronic–nuclear wave function, Bohmian dynamics is based on wave theory,
while semi-classical and path integral methods are based on Feynman’s path integral formulation.
Figure 1.3 illustrates pictorically the dynamical methods explained here.

Given the diversity of methods and authors it is unavoidable that every chapter follows its own
writing style. For that reason, we considered it useful to collect here some underlying mathematical
background, assuming basic knowledge of quantum mechanics, as well as a few photochemical
concepts, that naturally arise in many chapters.

1.2 Atomic Units

A comment on atomic units is in order here. Hartree atomic units can elegantly simplify equations
by setting to 1 the numerical value of some fundamental constants. Typical examples are the mass
of the electron me, the electron charge e, the Coulomb or electric force constant ke =

1
4𝜋𝜖0

and the

reduced Plank constant ℏ = h
2𝜋

. Other useful constants used as units, derived from those funda-
mental quantities and used in this book are the bohr, a0 ≈ 0.529 Å, and the hartree, Eh ≈ 27.21 eV.
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Figure 1.3 Grouping of dynamics methods by families and degree of exactness. Grid methods include the
standard method to solve the time-dependent Schrödinger equation (GRID), the multi-configurational
time-dependent Hartee method (MCTDH) and partially Gaussian MCTDH (G-MCTDH). From Bohmian
trajectories, formally exact to frozen Gaussian methods, such as variational multi-configurational Gaussian
(vMCG), full multiple spawning (FMS), multi-configurational Ehrenfest (MCE) and ab-initio multiple
spawning (AIMS). Coupled trajectories mixed quantum classical (CT-MQC) is the trajectory method derived
from exact factorization. Ehrenfest method and trajectory surface hopping (SH), follow next, since they are
based on uncoupled trajectories. Derived from the formally exact path integral method, semi-classical and
ring-polymer molecular dynamics (RPMD) arise.

However, using this notation forces readers to keep track of the omitted units, preventing a straight-
forward dimensionality analysis. For this reason, atomic units have been avoided as much as pos-
sible in most chapters, unless otherwise stated.

1.3 The Molecular Hamiltonian

The time evolution of a system is described by the time-dependent Schrödinger equation,

iℏ𝜕Ψ(r,R, t)
𝜕t

= ĤΨ(r,R, t), (1.1)

where Ĥ is the Hamiltonian of the system and Ψ(r,R, t) is the wave function describing the
molecule, with r and R, the electronic and nuclear coordinates, respectively. When applied to
the wave function, Ĥ yields the respective energy. If assumed as time-independent, Ĥ can be
expressed as,

Ĥ(r,R) = −
N∑

i=1

ℏ2

2me
∇2

i

⏟⏞⏞⏞⏟⏞⏞⏞⏟

T̂e

−
K∑

A=1

ℏ2

2MA
∇2

A

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

T̂n

+
N∑

i=1

N∑
j>i

e2

4𝜋𝜖0|ri − rj|
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

V̂ ee

+
K∑

A=1

K∑
B>A

e2ZAZB

4𝜋𝜖0|RA − RB|
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

V̂ nn

−
N∑

i=1

K∑
A=1

e2ZA

4𝜋𝜖0|ri − RA|
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

V̂ ne

,

(1.2)
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where the terms labeled as T̂ are kinetic energy terms for K nuclei and N electrons, and the rest,
labeled as V̂ are the potential energy terms describing interactions between electrons or nuclei
themselves, or between nuclei and electrons.

In atomic units, this equation reads simply as

Ĥ(r,R) = −
N∑

i=1

1
2
∇2

i −
K∑

A=1

1
2MA

∇2
A +

N∑
i=1

N∑
j>i

1|ri−rj|
+

K∑
A=1

K∑
B>A

ZAZB|RA−RB| −
N∑

i=1

K∑
A=1

ZA|ri−RA| .
(1.3)

1.4 Dirac or Bra-Ket Notation

The Dirac notation is a very compact way of describing quantum states and their inner prod-
ucts used in quantum mechanics, where the kets (|⋅⟩) are column vectors and the bras (⟨⋅|) their
Hermitian transpose row vectors, such as:

⟨Ψ| = |Ψ⟩∗ . (1.4)

Ket vectors are normally used in this context to specify the state of a system in whatever space basis
we are currently working on. Therefore, a wave function Ψ in x coordinates could be expressed as:

Ψ(x) ≡ ⟨x|Ψ⟩ . (1.5)

In the same way, applying an operator on this state would lead to:

ÂΨ(x) ≡ ⟨x|Â|Ψ⟩ . (1.6)

This notation can also be used to express integrals over products of wave functions – or rather a
wave function and a complex-conjugate wave function. For example, ⟨Ψ|Ψ⟩ is nothing but a short-
hand notation for

∫ Ψ∗(r)Ψ(r)dr ≡ ⟨Ψ|Ψ⟩ . (1.7)

where r symbolizes all the coordinates on which Ψ depends, and the integration is done over the
whole domain. An operator can be included as in

∫ Ψ∗(r)ÂΨ(r)dr ≡ ⟨Ψ|Â|Ψ⟩ , (1.8)

In practical quantum chemistry calculations, one commonly uses a one-electron basis set to
expand wave functions, i.e., a set of functions that depend on the coordinates of a single electron. In
this context, a few particular forms of integrals are especially useful, and their usual notation will be
introduced here. First, there is a term that collects the one-electron operators in the Hamiltonian,
the kinetic energy and the nuclei–electron attraction (see section 1.3), and is expressed as

hpq = ⟨𝜙p|ĥ|𝜙q⟩ (1.9)

= −∫ 𝜙∗
p(r)

(
ℏ2

2me
∇2 + e

4𝜋𝜖0

K∑
A=1

ZA|r − RA|
)
𝜙q(r)dr (1.10)

= − ℏ2

2me ∫ ∇𝜙∗
p(r)∇𝜙q(r)dr − e

4𝜋𝜖0

K∑
A=1 ∫

ZA𝜙
∗
p(r)𝜙q(r)|r − RA| dr (1.11)
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where 𝜙p as 𝜙q are two basis functions. The other important term to note corresponds to the
two-electron repulsion:

(pq|rs) = gpqrs = ⟨𝜙p𝜙r|ĝ|𝜙q𝜙s⟩ (1.12)

= e2

4𝜋𝜖0 ∫
𝜙∗

p(r1)𝜙q(r1)𝜙∗
r (r2)𝜙s(r2)|r1 − r2| dr1dr2 . (1.13)

Some alternative notations for these two-electron integrals are:

⟨pq|rs⟩ = (pr|qs) (1.14)

⟨pq||rs⟩ = ⟨pq|rs⟩ − ⟨pq|sr⟩. (1.15)

1.5 Index Definitions

In several chapters of this book we will use the following convention with respect to the indexation
of orbitals;

● a, b, c, d,… to denote empty (virtual) orbitals;
● i, j, k, l,… to denote doubly occupied (inactive) orbitals;
● t,u, 𝑣, x,… to denote active orbitals; and
● p, q, r, s,… as general indices to denote orbitals of unspecified type.

1.6 Second Quantization Formalism

We will now give a very brief introduction to the formalism of second quantization and how it is
used to express the Hamiltonian. In the original formulation of quantum mechanics for a fixed
number of particles, it was natural that the electronic Hamiltonian was expressed in terms of oper-
ators which are sums over particles – this was later called first quantization,

Ĥel =
N∑

i=1
(T̂e

i (ri) + V ne(ri)) +
e2

4𝜋𝜖0

N∑
i=1

N∑
j>i

1|ri − rj| , (1.16)

where i is the index of an electron, T̂e
i is the kinetic energy operator of electron i, and

V ne(ri) = − e
4𝜋𝜖0

K∑
A=1

ZA|ri − RA| (1.17)

is the attraction experienced by electron i from all the nuclei in the system. The last term is the
electron–electron repulsion term. However, with the onset of quantum field theory the notion
of a system having a fixed number of particles was abandoned and a new formalism was intro-
duced – second quantization – in which the summations run over the orbital space and the Hamilto-
nian operator is expressed in terms of operators that “probe” whether a particle (electron) is present
in some orbital and if so, include the contribution of that particular orbital. In this formalism the
electronic Hamiltonian is expressed as

Ĥel =
∑
pq

Êpqhpq +
1
2
∑
pqrs

êpqrs(pq|rs), (1.18)



�

� �

�

8 1 Motivation and Basic Concepts

where the summations are now in terms of the electronic orbitals2, hpq and (pq|rs) are the one- and
two-electron integrals introduced in Section 1.4, where 𝜙 are normalized molecular orbitals. The
remaining operators are the “probing” operators in which the first operator

Êpq =
∑

𝜎={𝛼,𝛽}
â†

p𝜎 âq𝜎 (1.19)

is the spin-averaged electron replacement operator (â†
p𝜎 and âq𝜎 are standard creation and

annihilation operators for electrons of spin 𝜎 in orbitals p and q, respectively), which moves one
electron from spatial orbital q to orbital p. The second operator is a two-electron replacement
operator, which can be expressed in terms of the one-electron replacement operator as

êpqrs = ÊpqÊrs − 𝛿qrÊps . (1.20)

In this formalism the Hamiltonian is now invariant to the number of particles – in terms of cal-
culations in a finite basis; however, the Hamiltonian is a function of the size of the basis set. This
formalism has several advantages and is now the standard in multi-configurational electron struc-
ture theory. Let us now briefly explore the probing nature of the operator in Eq. (1.19). In the
case Êpp operates on a closed-shell Slater determinant (SD), constructed from a set of orthonormal
orbitals, we will have

Êpp𝜓SD =

{
2𝜓SD if p is an occupied orbital
0𝜓SD if p is an empty orbital,

(1.21)

the operator will simply try to remove the electron and then try to put it back – this special case
of the electron replacement operator is also called the occupation number operator. Since every
occupied orbital in a closed-shell SD carries two electrons, we will get an occupation number of
two, alternatively, if no electrons are found in orbital p the operator will be a null operator. In
general we have that∑

p
ÊppΨ = NΨ, (1.22)

where N is the number of particles (electrons) in the system. The following commutation relations
apply to the one- and two-electron replacement operators:

[Êpq, Êxy] = Êpy𝛿xq − Êxq𝛿py (1.23)

[êpqrs, Êxy] = êpyrs𝛿xq − êxqrs𝛿py + êpqry𝛿xs − êpqxs𝛿ry . (1.24)

Finally we define the one- and two-particle density matrices as

Dpq = ⟨Ψ|Êpq|Ψ⟩ , (1.25)

and

Γpqrs = ⟨Ψ|êpqrs|Ψ⟩ . (1.26)

It is important to note the four-fold permutational symmetry of the two-electron density matrix:

Γpqrs = Γrspq = Γqpsr = Γsrqp . (1.27)

2 We have used a shorthand notation to indicate multiple summations (
∑

pq =
∑

p
∑

q), and we leave the summation
limits implicit
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In this perspective we compute the electronic energy of a normalized wave function Ψ with the
general expression

E =
∑
pq

Dpqhpq +
1
2
∑
pqrs

Γpqrs(pq|rs). (1.28)

Finally, this expression can be transformed from a molecular orbital basis to any other basis. In
particular, given that the orbitals 𝜙 are expressed as linear combinations of the one-particle basis
functions 𝜒 as

𝜙p =
∑
𝜇

cp𝜇𝜒𝜇 , (1.29)

we have that the one- and two-electron density matrices in the one-particle basis function expan-
sion are generated by

D𝜇𝜈 =
∑
pq

cp𝜇Dpqcq𝜈 (1.30)

and

Γ𝜇𝜈𝛾𝛿 =
∑
pqrs

cp𝜇cq𝜈Γpqrscr𝛾cs𝛿 , (1.31)

and we get

E =
∑
𝜇𝜈

D𝜇𝜈h𝜇𝜈 +
1
2
∑
𝜇𝜈𝛾𝛿

Γ𝜇𝜈𝛾𝛿(𝜇𝜈|𝛾𝛿). (1.32)

This expression has a special advantage in so-called direct methods, since the energy can be com-
piled directly from the integrals as they are generated in the one-particle basis set.

1.7 Born–Oppenheimer Approximation and Potential Energy
Surfaces

The BOA is one of the most used approximations in quantum chemistry to solve the
time-independent Schrödinger equation. Taking advantage of the fact that protons and neu-
trons are about 2000 times heavier than electrons, it neglects the kinetic energy of the nuclei.
Therefore, at every nuclear position the electrons will feel an average potential depending on
where the nuclei are located. This fact allows a separation of the Schrödinger equation into an
electronic and a nuclear part. It is then possible to solve the electronic Schrödinger equation
for every specific nuclear configuration, in which the Hamiltonian, eigenstates and eigenvalues
depend parametrically on the nuclear position,

ĤelΨel(r;R) = Eel(R)Ψel(r;R). (1.33)

Grouping the remaining terms of the molecular Hamiltonian (Eq. (1.2)), one arrives to the
time-independent nuclear Schrödinger equation:

iℏ
𝜕|Ψnuc(R)⟩

𝜕t
= Ĥ|Ψnuc(R)⟩ = [T̂n(R)) + Eel(R)]|Ψnuc(R)⟩ . (1.34)

This equation represents nuclei that can move on effective potential surfaces represented by the
electronic energies Eel. This representation of energies of electrons that depend parametrically on
the nuclear coordinates is precisely what is called the potential energy surface (PES). This approx-
imation will be valid whenever nuclei and electrons approximately decouple.
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1.8 Adiabatic Versus Diabatic Representations

If the nuclei move extremely slowly, the electronic Hamiltonian will change very slowly with time,
since it depends on the value of the nuclear coordinates. This means that if the starting electronic
state was an eigenstate of the electronic Hamiltonian at the initial position, it will continue being an
eigenstate during its time evolution. In this sense, the BOA is also known as the adiabatic approxi-
mation, since it assumes that the system behaves all the time “adiabatically”, i.e., without changing
its electronic wave function. However, there are some cases where the BOA breaks down.

Let us here express the total electronic wave function as a product of the electronic and nuclear
ones using all electronic eigenstates (𝛼 indices):

|Ψ(r,R)⟩ = ∑
𝛼

|Ψel
𝛼 (r;R)⟩ ⋅ |Ψnuc

𝛼 (R)⟩ , (1.35)

also known as the Born–Huang expansion. This expression can be inserted into the electronic
Schrödinger equation to yield(

T̂n + Eel
𝛼

) |Ψnuc
𝛼 (R)⟩ +∑

𝛽

T̂NAC
𝛽𝛼

|Ψnuc
𝛽

(R)⟩ = E|Ψnuc
𝛼 (R)⟩ . (1.36)

When comparing Eq. (1.36) and Eq. (1.34), one can see that the difference arises from the T̂NAC
𝛽𝛼

term, that can be expanded as

T̂NAC
𝛽𝛼

= −
K∑

A=1

1
2MA

[⟨Ψel
𝛼 |∇2

A|Ψel
𝛽
⟩ + ⟨Ψel

𝛼 |∇A|Ψel
𝛽
⟩∇A] . (1.37)

Since neglecting these kinetic coupling terms is the core of the BOA, they can be seen as correc-
tions. While the first term is known as BO diagonal coupling and is normally negligible, the second
term – called derivative or non-adiabatic coupling (NAC) – can be rather large in regions where the
electronic wave function changes fast with the nuclear coordinates. ∇A|Ψel

𝛽
⟩ is the gradient of the

electronic wave function and gives us the direction where it changes fastest. After projecting it
onto ⟨Ψel

𝛼 |, i.e., calculating its overlap with it, the term can be seen as how much the change of the
electronic wave function agrees with another electronic eigenstate. Its extent tells us how likely
non-adiabatic events are, its direction the coordinate motions where this change is larger, always
for a specific pair of electronic states. Note that this equation is still adiabatic, but corrected with
terms corresponding to non-adiabatic events or the breakdown of the Born–Oppenheimer approx-
imation. Thus, a total Hamiltonian might be composed of a Born–Oppenheimer one plus the NAC
terms that generate transitions between BO states.

In contrast, we could define a basis where the electronic states do not depend on the nuclear
coordinates (this labeling of the electronic wave function is normally called its character, so in this
case we would say the electronic state keeps its electronic character). This basis can be defined at a
particular geometry R0 where the electronic states were eigenstates of the electronic Hamiltonian.
Those states are called diabatic states and do not diagonalize Hel at geometries different from R0,

|Ψel
𝛼 (R)⟩ = ∑

i
c𝛼i(R)|Ψel

𝛼 ⟩dia , (1.38)

where there is no dependence of |Ψel
𝛼 ⟩dia on the nuclear coordinates R. Doing so, we can already

neglect the NAC terms, since there is no change of the electronic wave function with the nuclear
coordinates and therefore the coupling between electronic states is absorbed in the off-diagonal
terms of the Hamiltonian matrix. A scheme depicting adiabatic and diabatic states can be seen in
Figure 1.4.
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Figure 1.4 Schematic representation of adiabatic (states ordered by energy) and diabatic (states ordered
by their symmetry label or character) potential energy curves.

For systems having more than two electronic states, it is usually not possible to find strictly
diabatic states, so quasi-diabatic states are defined as a set of electronic states that minimize the
NAC terms. In general, the diabatic representation is used whenever one needs to integrate in time
domain over all the configurational space (see, for example, chapters 11 and 12) since the diabatic
couplings are smoothly varying with the nuclear coordinates, making numerics easier. In contrast,
dynamical methods based on local approaches (see e.g., chapters 14, 15 and 16), prefer the adiabatic
picture due to the peaked localized NACs that will tell when the BOA breaks down.

1.9 Conical Intersections

The case depicted in Figure 1.4 is typical, where the adiabatic states display an avoided crossing
along a particular coordinate: they become close in energy, but not exactly degenerate. Indeed, in
systems with only one internal nuclear degree of freedom (diatomic molecules), and for electronic
states of the same spin and spatial symmetry, this is almost always the case. In larger systems,
however, the greater number of degrees of freedom allows for situations where the adiabatic states
(as well as the diabatic states) are actually degenerate, these are known as conical intersections.

A conical intersection point is a particular geometry R× at which two adiabatic electronic states
are exactly degenerate. The degeneracy is lifted in two independent directions or nuclear displace-
ments, any geometrical distortion in these directions causes the PES to split, creating a generic
double cone shape that is the origin for the name (see Figure 1.1b). Conversely, distortions in
orthogonal directions do not break the degeneracy, which indicates that R× is not an isolated point,
but is part of a connected 3N − 8-dimensional subspace of geometrical configurations, known as
intersection space or seam. The points where the energy of the degenerate states is a local mini-
mum within the intersection space are called minimum energy conical intersections (MECI). The
two dimensions that do lift the degeneracy form the branching space or branching plane, and are
usually denoted as g (the difference between the gradients of the two states) and h (the derivative
or non-adiabatic coupling vector). Since the two adiabatic states are exactly degenerate at R×, they
are both eigenstates of the Hamiltonian with the same eigenvalue, and therefore any linear com-
bination of them is also an eigenstate with the same eigenvalue. This means that the two states at
the intersection are not uniquely defined, and neither are most state-specific properties or the g
and h vectors. The branching plane, however – the space spanned by the two vectors – is uniquely
defined and independent of which particular linear combinations of the two states is considered.

Conical intersections can be classified according to the topography of the PES in their vicinity.
The most common distinction is between peaked and sloped intersections. Peaked intersections
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are exemplified by the ideal shape displayed in Figure 1.1b: when the PES are represented in the
branching plane, the intersection point is manifested as local maximum on the lower surface and
a local minimum on the upper surface. This latter fact allows them to act as funnels or sinks from
the upper to the lower surface. Sloped intersections, on the other hand, can be visualized by tilting
the double cone’s vertical axis until parts of the upper surface become lower in energy than the
vertex (and parts of the lower surface higher than the vertex), at which point the intersection is
neither a local maximum nor a local minimum, and its role as attractor is reduced in comparison to
peaked intersections. An interesting property of sloped intersections is that they allow the existence
of paths that go from the lower surface to the upper surface while continuously decreasing the
potential energy.

1.10 Further Reading

For a deeper and more detailed discussion on the topics presented in this introductory chapter, the
reader is referred to books on general computational or quantum chemistry, such as those listed
below.

● Modern Quantum Chemistry. Attila Szabo and Neil S. Ostlund. McGraw–Hill, New York, 1989.
● Molecular Electronic-Structure Theory. Trygve Helgaker, Poul Jørgensen and Jeppe Olsen. Wiley,

Chichester, 2000.
● Essentials of Computational Chemistry: Theories and Models. Christopher J. Cramer. Wiley, New

York, 2002.
● Multiconfigurational Quantum Chemistry. Björn O. Roos, Roland Lindh, Per Åke Malmqvist,

Valera Veryazov and Per-Olof Widmark. Wiley, Hoboken, 2016.
● Introduction to Computational Chemistry. Frank Jensen. 3rd ed. Wiley, Chichester, 2017.
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