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Abstract

The purpose of the present chapter is to give students a detailed introduction to time-independent
multi-configurational reference perturbation theory (MRPT), in particular the CASPT2 method, one
of the standard tools for the study of excited states of molecular systems of small to intermediate size.
To achieve this, in as closed a form as possible, we believe that the chapter should begin with the
very basics of Rayleigh–Schrödinger (RS) and Møller–Plesset (MP) perturbation theory (PT) before we
present the MRPT. The multi-configurational version of perturbation theory has many features and
flaws which are either a direct consequence of the original Rayleigh–Schrödinger formulation, or due
to the choice of the zeroth order Hamiltonian. These flaws or peculiarities have to be clearly identified
and understood before we proceed toward the more elaborate multi-configurational reference pertur-
bation theories. This is then followed by a section dedicated to the most popular versions of single-state
multi-configurational reference perturbation theory. Here we again present the formulation of these
methods and also address the various problems they encounter. Multi-state versions of perturbation
theory are today based on effective Hamiltonian approximations. Hence, these deserve their own treat-
ment due to the fact that this approach introduces its own kind of features and problems, which need
to be addressed separately. At the very end of this chapter we summarize and present an outlook on the
subject of MRPT.

Let us briefly, before we start, address the reason behind the need of a perturbation theory
based on “multi-configurational reference” functions. Single-configuration reference methods,
such as standard coupled-cluster methods and Møller–Plesset perturbation theory, have been
successful in modeling molecular systems close to their equilibrium structure. However, at
molecular geometries at which such reference functions are qualitatively wrong, as in the case
of bond breaking, for example, single-configuration reference perturbation or coupled-cluster
theory has shown convergence problems. These approaches frequently produce significant
artifacts at such instances. This effect has been demonstrated to be associated with the qualitative
incorrectness of the reference functions, from which coupled-cluster or perturbation theory will
not be able to recover. Hence, the need for a theory based on reference functions which are
qualitatively correct – multi-configurational reference functions. It is not uncommon to find the
term “multi-reference” perturbation theory used to mean the same kind of theory. However, it
should not be confused with quasi-degenerate perturbation theory, that simultaneously treats
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several functions (which can be single- or multi-configurational) as their reference, and we avoid
this usage, except when it is part of a specific method’s name.

10.1 Rayleigh–Schrödinger Perturbation Theory

This section will cover a brief introduction to perturbation theory as presented originally by
Schrödinger [1], who based it on previous work by Lord Rayleigh [2]. We will develop the theory
explicitly up to second order, extensions to higher order are trivial. We will introduce the standard
equation for the perturbed wave functions and the corresponding energies, but we will will also
introduce the so-called 2n + 1 rule for the efficient computation of energies. This section will
be split into two sections: one for the basics of the single-state theory and a section on the issue
of convergence properties and intruder states. The former is consistent with the conventional
presentation of the subject, while the latter is often not discussed in the depth that students would
appreciate. The second section deals with an important problem which arises in both single-
and multi-configurational reference PTs. The discussion of the foundations will be resumed with
quasi-degenerate perturbation theory after the most significant single-state multi-configurational
reference perturbation methods have been presented.

10.1.1 The Single-State Theory

We would first like to point out that the formulation introduced by Schrödinger does not make any
explicit reference to the model used for describing wave functions – single configuration, multiple
configurations, or something else – but is basically a thought experiment based on the notion that
exact solutions (energies and wave functions) are known for a particular Hamiltonian

Ĥ0Ψ
(0)
i = E(0)

i Ψ(0)
i , (10.1)

these energies and wave functions are denoted as unperturbed reference energies and wave func-
tions of state i, the “(0)” is a notation that we will use to indicate the unperturbed entities. We also
note that, due to the Hamiltonian being a Hermitian operator, the corresponding eigenfunctions
form a set of complete functions, i.e., any other function can be expressed as a linear combination
of these eigenfunctions. We will then try to find out to what extent this information can be used to
solve the Schrödinger equation for any other Hamiltonian – a perturbed Hamiltonian – which can
be expressed as

Ĥ = Ĥ0 + 𝜆V , (10.2)

provided that V , the perturbation potential, is “small”. In the context of this chapter, and of RS
theory, V is a time-independent perturbation. 𝜆 is here introduced as the perturbation parameter,
and when it takes the values 0 and 1 this Hamiltonian is equal to the unperturbed Hamiltonian and
to the fully perturbed or “target” Hamiltonian, respectively. At this point we note that the theory is
independent of what the actual nature of the partitioning and the unperturbed reference functions
is, so these are completely arbitrary, apart from the desire that the resulting perturbation expansion
be rapidly converging such that the approach will be useful in practice. There will now follow two
different ways to derive the theory – the conventional and the variational approach.

10.1.1.1 The Conventional Projectional Derivation
The perturbation parameter is instrumental in our pursuit to make any sense of how the
information of the unperturbed system can be of any use. In passing we note that RS perturbation
theory is based on a global partitioning of the Hamiltonian, something it does not share with
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subsequent implementations of perturbation theory. The theory then proceeds with introducing
a Taylor expansions of the energy and the wave functions in terms of the perturbation parameter
and with the unperturbed energies and wave functions as the reference points of the expansions.
That is,

Ei = E(0)
i + E(1)

i 𝜆 + E(2)
i 𝜆2 +… (10.3)

for the energies and

Ψi = Ψ(0)
i + Ψ(1)

i 𝜆 + Ψ(2)
i 𝜆

2 +… (10.4)

for the wave function, where E(k)
i and Ψ(k)

i correspond to the kth-order correction to the perturbed
energy and wave function, respectively, as a function of the perturbation. At this time we do not
need to discuss what these corrections are, apart the obvious fact that the E(k)

i are the kth-order
derivatives of the energy with respect to the perturbation parameter𝜆. In the following we will make
a difference between the nth-order corrected energy and the nth-order correction of the energy.
While the latter is E(n), as found in Eq. (10.3), the former is the sum of the unperturbed energy and
all corrections up to the nth order:

E[n]
i =

n∑
i=0

E(i)
i . (10.5)

The RS theory now proceeds with expressing the Schrödinger equation of the perturbed system
in terms of the unperturbed Hamiltonian, energies and wave functions, that is,

(Ĥ0 + 𝜆V)(Ψ(0)
i + Ψ(1)

i 𝜆 + Ψ(2)
i 𝜆

2 +…)

= (E(0)
i + E(1)

i 𝜆 + E(2)
i 𝜆2 +…)(Ψ(0)

i + Ψ(1)
i 𝜆 + Ψ(2)

i 𝜆
2 +…) . (10.6)

After reordering the terms in the equation we find that

(Ĥ0Ψ
(0)
i − E(0)

i Ψ(0)
i )𝜆0

+ (Ĥ0Ψ
(1)
i + VΨ(0)

i − E(0)
i Ψ(1)

i − E(1)
i Ψ(0)

i )𝜆1

+ (Ĥ0Ψ
(2)
i + VΨ(1)

i − E(0)
i Ψ(2)

i − E(1)
i Ψ(1)

i − E(2)
i Ψ(0)

i )𝜆2

+… = 0. (10.7)

The Schrödinger equation is fulfilled for any value of the perturbation parameter, 𝜆. Hence, this
implies that each row of the equation above is independently identical to zero, and we have the
following equations explicitly up to second order of the perturbation,

Ĥ0Ψ
(0)
i = E(0)

i Ψ(0)
i (10.8)

Ĥ0Ψ
(1)
i + VΨ(0)

i = E(0)
i Ψ(1)

i + E(1)
i Ψ(0)

i (10.9)

Ĥ0Ψ
(2)
i + VΨ(1)

i = E(0)
i Ψ(2)

i + E(1)
i Ψ(1)

i + E(2)
i Ψ(0)

i , (10.10)

and then in general,

(Ĥ0 − E(0)
i )Ψ(n)

i = −VΨ(n−1)
i +

n∑
k=1

E(k)
i Ψ(n−k)

i . (10.11)

We identify the first equation as the Schrödinger equation of the unperturbed system. The sub-
sequent equations, however, leave us far from our goal – expressions of the corrections to the
perturbed energies and wave functions defined completely in terms of entities of the unperturbed
system. We note that Eq. (10.11) is invariant to any admixture of the reference state, Ψ(0)

i , into the
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nth-order correction, Ψ(n)
i , since this will leave the the left-hand side (LHS) unchanged. We relieve

this ambiguity by the introduction of the intermediate normalization:

⟨Ψ(0)
i |Ψ(k)

i ⟩ = 𝛿0,k . (10.12)

The combination of Eqs. (10.11) and (10.12) leads to two important results. First, Eq. (10.11) com-
pletely defines the nth-order correction of the wave function from lower-order corrections. Here
we note a recursive nature of Eq. (10.11), a non-recursive variant would lead to an expression in
terms of the Bloch equation – more about this later. Second, the exact energy can be computed as

Ei = ⟨Ψ(0)
i |Ĥ|Ψi⟩ . (10.13)

Equations (10.9) to (10.11), and so forth, can now be projected from the LHS and integrated with
the unperturbed wave functions. We start by projecting Eq. (10.11) with Ψ(0)

i this gives

⟨Ψ(0)
i |(Ĥ0 − E(0)

i )|Ψ(n)
i ⟩ = −⟨Ψ(0)

i |V |Ψ(n−1)
i ⟩ + n∑

k=1
⟨Ψ(0)

i |E(k)
i |Ψ(n−k)

i ⟩ . (10.14)

Using the Hermiticity Ĥ0 and the intermediate normalization this expression reduces to

E(n)
i = ⟨Ψ(0)

i |V |Ψ(n−1)
i ⟩ . (10.15)

This seems to mean that we need the (n − 1)th-order correction to the wave function in order to
compute the nth-order correction to the energy. This is, however, far from true and will be discussed
below.

Let us now return to the corrections of the wave function and Eq. (10.11). We will rearrange the
equation to form our general vehicle for the computation of corrections to the wave function. We
first note that the equation is devoid of any component of Ψ(0)

i . This property was actually used
when going from Eq. 10.14 to Eq. 10.15, since

⟨Ψ(0)
i |(Ĥ0 − E(0)

i )|Ψ(n)
i ⟩ = ⟨Ψ(0)

i |Ĥ0|Ψ(n)
i ⟩ − ⟨Ψ(0)

i |E(0)
i |Ψ(n)

i ⟩
= E(0)

i 𝛿0,n − E(0)
i 𝛿0,n = 0. (10.16)

This means that we can now multiply Eq. (10.11) with the inverse of (Ĥ0 − E(0)
i ) avoiding any sin-

gularity problems. We get

Ψ(n)
i = (Ĥ0 − E(0)

i )−1

(
−VΨ(n−1)

i +
n∑

k=1
E(k)

i Ψ(n−k)
i

)
. (10.17)

Knowing that the correction and any term of Eq. (10.15) are devoid of Ψ(0)
i , we introduce the pro-

jection operator

Q̂ = 1 − |Ψ(0)
i ⟩⟨Ψ(0)

i | . (10.18)

We can now simplify Eq. (10.17) without any approximation and get

Ψ(n)
i = Q̂(Ĥ0 − E(0)

i )−1Q̂

(
−VΨ(n−1)

i +
n−1∑
k=1

E(k)
i Ψ(n−k)

i

)
. (10.19)

Note that we have reduced the summation range, the projection operator will now, whenever
needed, cancel any appearance of the reference wave function. Let us pause at this point and see
what we have accomplished. We have first derived our master equation (10.11). From this equation
we have derived a general expression for the correction to the energy, see Eq. (10.15), in which the
nth-order correction to the energy requires the (n − 1)th-order correction to the wave function.
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Finally, in Eq. (10.19) we now have a recursive approach in which corrections to the wave function
can be computed. We also note that in RSPT the corrected energy is neither an eigenvalue nor an
expectation value, and the corrected wave function is not an eigenfunction to the Hamiltonian.

Before we complete this section let us return to our dangling question: “To which order do we
need to know the correction of the wave function if we want to compute the nth-order correction
to the energy?” From what we have seen so far the answer seems to be (n − 1). However, as noted
before, this is wrong. Consider that the first- and second-order corrections to the wave function,
according to Eq. (10.19), can be expressed as

Ψ(1)
i = −Q̂(Ĥ0 − E(0)

i )−1Q̂VΨ(0)
i , (10.20)

and

Ψ(2)
i = Q̂(Ĥ0 − E(0)

i )−1Q̂(−V + E(1)
i )Ψ(1)

i . (10.21)

We can then, for example, write the third-order correction of the energy as

E(3)
i = ⟨Ψ(0)

i |V |Ψ(2)
i ⟩

= ⟨Ψ(0)
i |VQ̂(Ĥ0 − E(0)

i )−1Q̂(−V + E(1)
i )|Ψ(1)

i ⟩
= ⟨Ψ(1)

i |V − E(1)
i |Ψ(1)

i ⟩ . (10.22)

This clearly demonstrates that the third-order energy can be computed from the first-order correc-
tions to the wave function, a first demonstration of Wigner’s 2n + 1 rule. To develop this in more
depth is beyond the scope of this chapter. For those students interested in this we recommend
the excellent book by Helgaker and co-workers [3], where this particular issue is analyzed with a
variational Lagrangian approach.

Up to this point we have not been specific about the corrections to the wave function, other than
the fact that we use the intermediate normalization. At this point we will make an ansatz based on
our observation that the corrections are orthogonal to the reference functions, that is, we will take
the set of unperturbed eigenfunctions as a basis set,

Ψ(1)
i =

∑
j≠i

cjiΨ
(0)
j . (10.23)

Using our master equation, Eq. (10.11), replacing the nth-order correction with the previous ansatz,
left-multiplying with ⟨Ψ(0)

l | and finally integrating we get∑
j≠i

cji⟨Ψ(0)
l |(Ĥ0 − E(0)

i )|Ψ(0)
j ⟩ = −⟨Ψ(0)

l |V |Ψ(0)
i ⟩ , (10.24)

which simplifies to

cli =
⟨Ψ(0)

l |V |Ψ(0)
i ⟩

E(0)
i − E(0)

l

. (10.25)

Following Eq. (10.15) and substituting the first-order correction as described above, we can formu-
late the second-order correction to the energy as

E(2)
i =

∑
j≠i

⟨Ψ(0)
i |V |Ψ(0)

j ⟩⟨Ψ(0)
j |V |Ψ(0)

i ⟩
E(0)

i − E(0)
j

. (10.26)

At this point we stop any further analysis. There are several reasons for this. Two dominating
ones are that the expressions get more and more complicated and cumbersome, but also, and maybe
more importantly, perturbation theory beyond second-order corrections to the energy has not been
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found to constitute a significant enough improvement to compensate the additional complexity and
computational expense. The curious readers can either derive the next set of equations themselves
or find them published elsewhere.

10.1.1.2 The Bi-Variational Approach
In the above conventional approach we projected the Schrödinger equation from the left with the
reference wave function, Ψ(0)

i . This introduces an asymmetry which is in particular manifested by
the shape of the equation in which we compute corrections to the energy (see Eq. 10.15). In this
section we will explore an alternative derivation which will be in accordance with Wigner’s 2n + 1
rule. To explore this we start from an expression which is originally symmetric with respect to its
bra and ket side. For convenience, in the rest of this section we will omit the subindex i in the
wave functions and energies, since all expressions refer to a single state. In order to maintain the
symmetry we will use a bi-functional expression of a generalization of the expectation value for the
energy, that is

(𝜆, Ψ̄, Ψ̃) = ⟨Ψ̄|Ĥ(𝜆)|Ψ̃⟩ , (10.27)

which we note is equivalent to the variational expression of the exact energy,

(𝜆,Ψ,Ψ) = E(𝜆,Ψ),

given an arbitrary actual value of the perturbational parameter, and if the normalized wave func-
tions Ψ̄ and Ψ̃ are equivalent to the exact eigenfunction, Ψ, of the Hamiltonian Ĥ(𝜆), in which case
we can also write

⟨Ψ|Ĥ(𝜆) − (𝜆,Ψ,Ψ)|Ψ⟩ = 0. (10.28)

We note that, (𝜆,Ψ,Ψ), the exact energy, is at the global minimum and the gradient, with respect
to any variation of the wave function, is zero:

∇Ψ̄|Ψ̄=Ψ = 0

∇Ψ̃|Ψ̃=Ψ = 0. (10.29)

Since this holds for any value of the perturbational parameter, we also have that the derivatives
must vanish order by order, for k > 0:

∇Ψ̄ (n)|Ψ̄=Ψ = 0 ∇Ψ̄(k) (n)|Ψ̄=Ψ = 0

∇Ψ̃ (n)|Ψ̃=Ψ = 0 ∇Ψ̃(k) (n)|Ψ̃=Ψ = 0. (10.30)

These conditions of vanishing gradients for the variational parameters will help us later in simpli-
fying the equations we derive. From now on, we will consider the case where Ψ̄ = Ψ̃ = Ψ, but we
will continue to make a difference between the two functions, Ψ̄ and Ψ̃, although we set them to
be identical, Ψ.

We proceed from Eq. (10.28) and replace Ψ with Ψ(0) + Q̂Ψ⟨Ψ(0)|Ĥ − |Ψ(0)⟩ + ⟨Ψ(0)|Ĥ − |Q̂Ψ⟩
+ ⟨Q̂Ψ|Ĥ − |Ψ(0)⟩ + ⟨Q̂Ψ|Ĥ − |Q̂Ψ⟩ = 0. (10.31)

After expanding Ĥ = Ĥ0 + 𝜆V and some rearrangement, noting that ⟨Ψ(0)|QΨ⟩ = 0, we have

(𝜆,Ψ,Ψ) = ⟨Ψ(0)|Ĥ0|Ψ(0)⟩ + 𝜆⟨Ψ(0)|V |Ψ(0)⟩
+ 𝜆⟨Ψ(0)|V |Q̂Ψ(𝜆)⟩ + 𝜆⟨Q̂Ψ(𝜆)|V |Ψ(0)⟩
+ ⟨Q̂Ψ(𝜆)|Ĥ0 + 𝜆V − (𝜆,…)|Q̂Ψ(𝜆)⟩ , (10.32)
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where the third and fourth terms have not been merged together to reflect the difference of the
bra and ket wave functions. It could be argued that nothing has been gained by the introduction
of this equation, compared with a conventional approach using a projection with the reference
wave function on the Schrödinger equation. In particular, the exact energy appears on both sides
of the equation and it is more complicated. However, there is a significant important advantage
with this approach as will become evident soon. Moreover, an analysis order by order shows that
the contribution from the energy on the right-hand side (RHS) will only depend on lower-order
corrections to the energy than the LHS and will not involve the actual value of the exact energy.
That is, at the stationary point at which  = Eexact, we have that

 (n) = E(n) = 𝛿n0E(0) +
n−1∑
k=0

⟨Ψ(k)|V |Ψ(n−1−k)⟩
+

n−1∑
k=1

⟨Ψ(k)|Ĥ0 − E(0)|Ψ(n−k)⟩
−

n−2∑
k=1

E(k)
n−k−1∑

l=1
⟨Ψ(l)|Ψ(n−k−l)⟩ . (10.33)

In particular, we note that this formulation is completely symmetric with respect to the treatment
of the bra and ket sides. At this point we stop using the explicit reference to  and will just use E.
However, we should keep in mind that when we differentiate we do that on  ! To continue, Eq.
(10.33) now trivially provides us with expressions for the corrected energy up to first order which
are identical to those obtained from the projectional derivation,

E(0) = ⟨Ψ(0)|Ĥ0|Ψ(0)⟩ (10.34)

E(1) = ⟨Ψ(0)|V |Ψ(0)⟩ , (10.35)

However, at second order things take a different direction, we get

E(2) = ⟨Ψ(0)|V |Ψ(1)⟩ + ⟨Ψ(1)|V |Ψ(0)⟩ + ⟨Ψ(1)|Ĥ0 − E(0)|Ψ(1)⟩ (10.36)

instead of (cf. Eq. 10.15) just E(2) = ⟨Ψ(0)|V |Ψ(1)⟩! For the third-order correction we do not get E(3) =⟨Ψ(0)|V |Ψ(2)⟩, but

E(3) = ⟨Ψ(0)|V |Ψ(2)⟩ + ⟨Ψ(1)|V |Ψ(1)⟩
+ ⟨Ψ(2)|V |Ψ(0)⟩ + ⟨Ψ(1)|Ĥ0 − E(0)|Ψ(2)⟩
+ ⟨Ψ(2)|Ĥ0 − E(0)|Ψ(1)⟩ − E(1)⟨Ψ(1)|Ψ(1)⟩ . (10.37)

What is going on? Well, remember that these expressions are variational. Taking the second-order
energy correction, for example, differentiating with respect to Ψ̄(1), and equating to zero we find that

∇Ψ̄(1)E(2) = V |Ψ(0)⟩ + (Ĥ0 − E(0))|Ψ(1)⟩ = 0, (10.38)

and similarly for Ψ̃(1). That allows us to reduce Eq. (10.36) in two different ways getting,

E(2) = ⟨Ψ(0)|V |Ψ(1)⟩ = ⟨Ψ(1)|V |Ψ(0)⟩ . (10.39)

To continue, for the third-order correction to the energy, we find that the gradient reveals the
following conditions,

∇Ψ̄(1)E(3) = (Ĥ0 − E0)|Ψ(2)⟩ + (V − E(1))|Ψ(1)⟩ = 0 (10.40)

∇Ψ̄(2)E(3) = V |Ψ(0)⟩ + (Ĥ0 − E(0))|Ψ(1)⟩ = 0, (10.41)
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and the equivalent equations for the bra side. Here we are left with some ambiguity: Which of the
relations should we use to eliminate redundancies and in which order? We will, of course, use the
conditions that eliminate the higher-order corrections first, and continue until we have exhausted
all possibilities. For the third-order energy correction, for example, we note that if we use one of
the last conditions (e.g., for the bra) first and then the corresponding one of the first conditions,
we will gain nothing – we will simply regenerate the Eq. (10.15) expression, albeit in a very clumsy
way. However, using the two last conditions we compile the third-order correction to the energy as

E(3) = ⟨Ψ(1)|V − E(1)|Ψ(1)⟩ , (10.42)

where we have completely eliminated Ψ(2) from the expression!
We will now generalize this procedure to reduce Eq. (10.33), for which we examine all elements

of the form

⟨Ψ(k)|Ô|Ψ(l)⟩ ,
that is,

⟨Ψ(k)|V |Ψ(n−1−k)⟩⟨Ψ(k)|Ĥ0 − E(0)|Ψ(n−k)⟩⟨Ψ(m)|Ψ(n−k−m)⟩ .
To tackle this reduction let us rewrite Eq. (10.33) in a grid form, representing the ⟨Ψ(k)|Ô|Ψ(l)⟩ terms.
The indices k and l will be used to label columns and rows, and each cell contains the associated
operator Ô (empty cells are zero). We will display cells in green if they survive the reduction process.

Starting with n = 1, we get
k 0l

0 V

where the only cell represents ⟨Ψ(0)|V |Ψ(0)⟩. To proceed with n = 2, we have

k 0 1l

0

1

V

V Ĥ0 − E (0)

1

V

− E

The gradient conditions are now seen as full rows or columns, and we can eliminate one of them,
indicated with a zigzag strike-out. The result corresponds to ⟨Ψ(0)|V |Ψ(1)⟩. For n = 3 we again see
the gradient conditions as rows and columns, and we can strike out k = 2 and l = 2:

k 0 1 2l

0

1

2

V

V

Ĥ0 − E (0)

ˆ

V − E (1)

2

V

− E

2 V Ĥ0 − E (0)



�

� �

�

10.1 Rayleigh–Schrödinger Perturbation Theory 307

It is only allowed to strike out a row or column if it contains no non-empty cell that has already
been stricken out. We could have stricken out k = 2 and k = 1 to generate ⟨Ψ(0)|V |Ψ(2)⟩, but instead
we have here obtained ⟨Ψ(1)|V − E(1)|Ψ(1)⟩, which requires only first-order entities (cf. Eq. 10.22).
Similarly, for n = 4

k 0 1 2 3l

0

1

2

3

V

V

Ĥ0 − E (0)

Ĥ0 − E (0)

Ĥ0 − E (0)

V − E (1)

V − E (1)

− E (2)

and for n = 5

k 0 1 2 3 4l

0

1

2

3

4

V

V

Ĥ0 − E (0)

Ĥ0 − E (0)

Ĥ0 − E (0)

Ĥ0 − E (0)

V − E (1)

V − E (1)

V − E (1)

− E (2)

− E (2)

− E (3)

3

− E

− E

4

V

− E

H0HH − E (0)3 V − E (1)

4 V Ĥ0H − E (0)

As for n = 3, we could eliminate all columns k > 0 (or rows l > 0), and we would end up with
Eq. (10.15). But in order to eliminate higher-order entities, we proceed by eliminating the rows and
columns with the highest k and l indices until elimination is impossible. By inspection we find that

E(4) = ⟨Ψ(2)|V − E(1)|Ψ(1)⟩ − E(2)⟨Ψ(1)|Ψ(1)⟩ (10.43)
E(5) = ⟨Ψ(2)|V − E(1)|Ψ(2)⟩ − 2E(2)⟨Ψ(1)|Ψ(2)⟩ − E(3)⟨Ψ(1)|Ψ(1)⟩ . (10.44)

Thus, a general grid representation gives us the following table.

k 0 1 2 . . . i . . . n − 3 n − 2 n − 1l

0

1

2
...

i

...
n − 3

n − 2

n − 1

V

V Ĥ0 − E (0)

Ĥ0 − E (0)

Ĥ0 − E (0)

Ĥ0 − E (0)

V − E (1)

V − E (1)

V − E (1)

V − E (1)

−E (2)

−E (2)

−E (n−i−1)−E (n−i−2) V − E (1)

−E (n−i−2)

−E (n−i−1)

−E (n−4)

−E (n−3)

−E (n−3)

−E (n−2)
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First, it is obvious from the elimination process that all rows and columns that contain the oper-
ator Ĥ0 − E(0) can be ignored. At the end of the elimination process we will be left with a block of
elements of the size m × (m − 1) if n = 2m, the even case, or m × m if n = 2m + 1, the odd case – the
green blocks in all table representations above. We note that in all terms but one the operator is
of the nature −E(o) and that o has a value such that, together with the order indices of the wave
function corrections, adds up to n (k + l + o = n). The remaining element is

⟨Ψ(m)|V − E(1)|Ψ(m+i−1)⟩
if we generalize the odd and even case to n = 2m + i, where i is 0 or 1 for the even and odd cases,
respectively. Summing up the remaining elements row-/column-wise we derive the following
general expression:

n = 2m + i, i ∈ {0, 1}

E(n) = ⟨Ψ(m)|V |Ψ(m+i−1)⟩ − m∑
k=1

m+i−1∑
l=1

E(n−k−l)⟨Ψ(k)|Ψ(l)⟩ . (10.45)

This expression can be found in ref. [3] – in a derivation based on a variational analysis of a Lagrange
multiplier approach – albeit a different order of summation. To conclude this section, the primary
benefit of this formulation was the derivation of a variational expression for the second-order cor-
rection to the total energy – a feature some developers use for finding the correction in an efficient
way. Additionally, if higher-order corrections are to be computed this formalism offers an optimal
procedure for that purpose.

10.1.2 Convergence Properties and Intruder States

The use of perturbation theory seems at first glance to be a rock-solid approach that would never
fail. However, this is unfortunately not the case. Here we will discuss the convergence properties
of perturbation theory to some extent and the associated issue of intruder states. This short section
will not only clarify the issue but will also suggest a remedy to correct the problem. The presentation
here, based on Kato’s work [4], will be simplified and brief. A longer and more detailed presentation
can be found in refs. [5] and [3].

In the text that follows we will address the issue of the convergence properties of RSPT. We will
do the core analysis based on a simple two-state case – a study of a multi-state case would make the
analysis complicated and messy. We will initially do that on the assumption that the perturbation
strength parameter 𝜆 takes only real values. This will give us insight into how the relative values
of the energy gap between the two states and the coupling element play a fundamental role in
determining whether or not the perturbation series of a particular partitioning will converge. We
will then introduce a generalization of this by allowing the perturbation strength to take complex
values – this will improve and clarify the analysis. In combination with this we will introduce the
notion of degeneracies, which can be characterized as the origin of the so-called front- or back-door
intruder states. Finally, we will, in the two-state model, introduce a gap-shift parameter which will
let us model and modify the conditions of perturbation expansion convergence and the appearance
of intruder states. The gap-shift technique will also be the inspiration for techniques to improve the
convergence and remove intruder states.

Assume that we, in a two-state model, partition the Hamiltonian as follows:

H =
(
𝛼 0
0 𝛽

)
+ 𝜆

(
0 𝛿

𝛿 0

)
, (10.46)
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where 𝛼 and 𝛽 represent the eigenvalues of the zeroth-order states, 𝛿 corresponds to the interaction
term between the reference states over the perturbation potential, and 𝜆 is the standard perturba-
tional strength parameter. For this trivial case we can compute the exact energies of the final states
as

E± = 𝛼 + 𝛽
2

±
√
(𝛽 − 𝛼)2 + 4𝜆2𝛿2

2
. (10.47)

We rewrite this for the ground state as

E = 𝛼 + 𝛽
2

− |𝛽 − 𝛼|
2

√
1 + 4𝜆2𝛿2

(𝛽 − 𝛼)2 , (10.48)

and note that the way forward to reshape this into an RS summation order by order goes via the
Taylor expansion of

√
1 + x for which we know that the expansion converges if |x| < 1. This leads,

as a requirement for convergence, to the inequality

4𝛿2

(𝛽 − 𝛼)2 < 1 (10.49)

and we get the following final convergence condition:

|𝛽 − 𝛼| > 2|𝛿|, (10.50)

that is, the energy gap between the states should be larger than twice the interaction between the
unperturbed states over the perturbation potential to guarantee convergence in a perturbational
approach. This is now a tool that will assist us in using information from the unperturbed states.
Clearly, it suggests that we have a serious problem if two unperturbed states are close to degenerate.

To proceed, we will also have to analyze what happens when we have a degeneracy for the per-
turbed states. To do this we will use the technique of Kato [4]. That is, we follow the same procedure
as above with the two new ingredients, (i) 𝜆 is allowed to take complex values, 𝜆 = 𝜆R + i𝜆I, and
(ii) we identify values for 𝜆 at which the two states are degenerate, Ei(𝜆R + i𝜆I) = Ej(𝜆R + i𝜆I). In
passing it is noted that these degeneracies occur in conjugate pairs (𝜆, 𝜆∗).

In this analysis it is found that the convergence of the perturbation series depends on the behav-
ior of the energies Ei(𝜆) inside the unit circle |𝜆| ≤ 1 in the complex plane. That is, if the value
of 𝜆 that causes a degeneracy in the perturbed states represents a point inside the unit circle, we
have a convergence issue and the state that becomes degenerate with the reference state is called
an intruder state. The intruder states are divided into two classes, (i) front-door intruders (𝜆R > 0),
which in real life tend to correspond to low-excitation states, and (ii) back-door intruders (𝜆R < 0),
corresponding to high-excitation states. The difference between the front- and back-door intrud-
ers is manifested in different convergence patterns of the energy (oscillating versus alternating),
change in reference weight (slow versus abrupt), etc.

To get a better understanding of this situation an alternative partitioning is utilized,

H =
(
𝛼 0
0 𝛽 + 𝛾

)
+ 𝜆

(
0 𝛿

𝛿 −𝛾

)
, (10.51)

where 𝛾 ∈ ℝ is the gap-shift parameter. The solutions in this case are given by

E± = 𝛼 + 𝛽 + (1 − 𝜆)𝛾
2

±
√
[|𝛽 − 𝛼| + (1 − 𝜆)𝛾]2 + 4𝜆2𝛿2

2
. (10.52)

We note that this particular partitioning is such that at 𝜆 = 1 the energy does not depend on the
gap-shift parameter. Equation (10.52) has a degeneracy (as can be found by setting the expression
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in the square root to zero) for a value of the perturbation strength parameter of

𝜆± = |𝛽 − 𝛼| + 𝛾
4𝛿2 + 𝛾2 (𝛾 ± i2𝛿), (10.53)

and if |𝜆±| < 1 we have a convergence problem and a corresponding intruder state. We can twist
this analysis around and reformulate it to answer the question “What is the minimal gap-shift
parameter which will make the perturbation expansion converge?”, arriving at the result

𝛾c =
4𝛿2 − (𝛽 − 𝛼)2

2|𝛽 − 𝛼| . (10.54)

Alternatively, we can paraphrase Eq. (10.50) to see the influence of the gap-shift on the original
convergence condition, that is

2|𝛿| < |𝛽 − 𝛼|√1 + 2𝛾|𝛽 − 𝛼| . (10.55)

To conclude the analysis, convergence is not an obvious property of the perturbation expansion.
The relative sizes of energy differences and interactions over the perturbation are of significance
for the convergence condition. We find that when convergence breaks down this is associated with
front- or back-door intruder states. It was finally demonstrated that the convergence issue could
be managed by introducing a gap-shift parameter which, with the appropriate value, will guaran-
tee convergence of the perturbation expansion. We will now continue with a presentation of two
methods that will solve convergence issues in perturbation theory (as implemented in the CASPT2
method): the real and imaginary shift methods – both draw their inspiration from the gap-shift
parameter trick.

10.1.2.1 Real and Imaginary Shift Techniques
In the gap-shift technique suggested in association with multi-state situations the partitioning of
the Hamiltonian is established as

Ĥ = (Ĥ0 + 𝜖Q̂) + (V − 𝜖Q̂), (10.56)

where 𝜖 is the gap-shift (also referred to by some as a level-shift) parameter – a small real number.
With this partitioning we get that the energy corrected up to first order is invariant to the gap-shift
parameter,

E[1] = E(0) + E(1)

= ⟨Ψ(0)|Ĥ0 + 𝜖Q̂|Ψ(0)⟩ + ⟨Ψ(0)|V − 𝜖Q̂|Ψ(0)⟩
= ⟨Ψ(0)|Ĥ0|Ψ(0)⟩ + ⟨Ψ(0)|V |Ψ(0)⟩ . (10.57)

However, after this we will start to see effects from the gap-shift parameter, for example, the coeffi-
cients of the first-order correction to the wave function under the influence of the gap-shift param-
eter are computed as (see Eq. 10.25)

c̃ji = −
⟨Ψ(0)

j |V |Ψ(0)
i ⟩

E(0)
j − E(0)

i + 𝜖
=

⟨Ψ(0)
j |V |Ψ(0)

i ⟩
E(0)

i − E(0)
j − 𝜖

, (10.58)

and the second-order energy correction, which also depends on the gap-shift parameter, is
expressed as

Ẽ(2)
i =

∑
j≠i

⟨Ψ(0)
i |V |Ψ(0)

j ⟩⟨Ψ(0)
j |V |Ψ(0)

i ⟩
E(0)

i − E(0)
j − 𝜖

, (10.59)
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where we indicate with a tilde that these quantities are obtained in the presence of the gap shift.
We will try to remove the influence of the gap-shift parameter as if there was no intruder-state

problem. This dependence is removed by the following procedure and approximation. First we note
that we can, after some struggle, rewrite the level-shifted second-order correction to the energy as

Ẽ(2)
i = E(2)

i + 𝜖
∑
j≠i

c̃2
ji

⎛⎜⎜⎝1 − 𝜖

E(0)
i − E(0)

j

⎞⎟⎟⎠ , (10.60)

which under the assumption |E(0)
j − E(0)

i | ≫ |𝜖| (equivalent to not having an intruder-state prob-
lem) gives us the approximation

E(2)
i ≈ Ẽ(2)

i − 𝜖
(

1
𝜔̃i

− 1
)

≡ E(2),LS
i , (10.61)

where 𝜔̃i =
(∑

j≠ic̃2
ji + 1

)−1
is the weight of the reference function in the normalized expansion of

the wave function including the first-order correction under the influence of the gap-shift param-
eter. As can be seen from the equation, in the absence of any intruder state Ẽ(2)

i is linear with
respect to the gap-shift parameter, and E(2),LS

i , the level-shift (LS) corrected second-order energy,
is, to first order in 𝜖, equal to the result of the original approach. Hence, the technique of gap
shifting can be used in general, since it will not significantly affect the result when there is no
convergence problem. For a detailed description of this type of a real-shift technique and results
of using it can be found in the work by Roos and Andersson [6]. In particular, they have demon-
strated that the potential energy surface away from the molecular structures at which singularities
arise is unaffected by the gap-shift approach and the use of the level-shifted corrected values for the
second-order energy corrections gives results which are much more independent of the size of the
gap-shift parameter. See fig. 10.1 for a case in which the method is instrumental in avoiding intruder
states.

This work inspired Forsberg and Malmqvist [7] to find alternative ways to get a second-order
corrected energy which was even more independent of the size of the gap-shift parameter. Forsberg
and Malmqvist introduced the imaginary gap-shift parameter, i𝜖, to investigate this. It should be
mentioned that the idea of an imaginary shift had been explored just a year earlier [8]. Similar to the
case of a real-valued gap-shift parameter we will have that the energy up to first order is unaffected
by the perturbation, the parameter shows up again in the second-order correction to the energy
and elimination will have to be made in a fashion different from what was demonstrated above.
We get trivially that the second-order energy correction is

Ẽ(2)
i =

∑
j≠i

⟨Ψ(0)
i |V |Ψ(0)

j ⟩⟨Ψ(0)
j |V |Ψ(0)

i ⟩(E(0)
i − E(0)

j − i𝜖)

(E(0)
i − E(0)

j )2 + 𝜖2
, (10.62)

where we are interested in the real part and want to explicitly eliminate the dependence of the
strength of the gap-shift parameter. This would be trivial if the calculation was performed with
complex arithmetic, but that is seldom the case and something which we try to avoid. To our assis-
tance comes the formalism we derived using the bi-functional variational technique to derive the
energy equations order by order. In particular, we have that the second-order energy correction
(Eq. 10.36), can be expressed as (now with the modified Ĥ0 and V terms)

 (2)
i (Ψ̄i = Ψi, Ψ̃i = Ψi)

= ⟨Ψ(0)
i |V |Ψ(1)

i ⟩ + ⟨Ψ(1)
i |V |Ψ(0)

i ⟩ + ⟨Ψ(1)
i |Ĥ0 + i𝜖 − E(0)

i |Ψ(1)
i ⟩ , (10.63)
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Figure 10.1 The potential energy curve for the ground state of Cr2 for three values of the level shift,
0.05 Eh (solid line), 0.10 Eh (dashed line), and 0.20 Eh (dotted line). The LS correction of Eq. (10.61) has been
applied. The lower diagram gives the corresponding weight of the CASSCF reference function. Reprinted
with permission from ref. [6]. Copyright 1995, Elsevier.

where the gap-shift parameter associated with V disappears due to the orthogonality of Ψ(0) and
Ψ(1) under intermediate normalization. The derivative of the expression above is

∇Ψ̄(1)
i
 (2)

i |Ψ̄i=Ψi ,Ψ̃i=Ψi
= V |Ψ(0)

i ⟩ + (Ĥ0 + i𝜖 − E(0)
i )|Ψ(1)

i ⟩ = 0, (10.64)

which we can solve in an iterative manner using a preconditioned conjugate gradient (PCG)
procedure (it should be of no surprise that this equation becomes equivalent to Eq. (10.11) if
we project with Q̂ – we are only interested in the part of the LHS which is perpendicular to the
reference function). In the implementation of the PCG a particular routine and the preconditioner
are slightly modified to incorporate the imaginary shift. At convergence the trial vector is used in
a last call to the routine, but this time for the unshifted Ĥ0 and the corrected energy is computed
using Eq. (10.63). In the closing of their report, Forsberg and Malmqvist list the advantages of the
new method compared to the real-shift approach. First, the effect of the imaginary-shift approach
on points away from the singularity is smaller than that of the real-shift method (compare
figs. 10.1 and 10.2). Second, the imaginary-shift method has the advantage that it does not create
new singularities – the real-valued shift technique does – but removes the singularities altogether.
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Figure 10.2 The CASPT2 potential energy curves for the (1Σ+
g ) ground state of Cr2, unshifted and with five

values of the imaginary shift (called 𝜎 here). Reprinted with permission from ref. [7]. Copyright 1997,
Elsevier.

This is particularly important for the purpose of studies of excited states. To summarize their
conclusions, the imaginary-shift technique includes no calculations using complex arithmetic, the
computed energy is real, and the procedure seems to have an edge over real-valued shift techniques
in resolving cases with close to perturbation expansion divergence and the associated intruder
states. We finally note that the iterative procedure mentioned above is a normal procedure in
perturbation theory, although for some cases such as the Møller–Plesset partitioning in association
with single determinant wave functions a non-iterative approach is accessible.

We will later see other examples of shift techniques, in particular the sometimes controver-
sial IPEA shift (see section 10.3.3.5). We will have examples in which the shift is not universal
but actually specific with respect to the state in the first-order interacting space. This is trivially
achieved with a state-specific shift parameter designed as follows∑

j≠i
𝜖j|Ψ(0)

j ⟩⟨Ψ(0)
j | , (10.65)

where the sum runs over the space of the complementary states. We will return to this as we discuss
the IPEA shift.

This ends the discussion of single-state perturbation theory from the perspective of RSPT. In the
subsequent sections we will see examples of specifics with respect to the partitioning of the Hamil-
tonian, how to deal with the fact that we do not have a complete reference space, what happens if
the partitioning is state dependent as in the case of a multi-state formalism, etc.

10.2 Møller–Plesset Perturbation Theory

Møller–Plesset perturbation theory (MPPT), in which the reference functions are single determi-
nants, is discussed here for several reasons. One, it deals with the issue of what to do if there
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is no set of known reference functions which are eigenfunctions to Ĥ0. Two, CASPT2 theory is
designed to coincide with MPPT2 results in the case the complete active space SCF collapses to a
single-determinant SCF wave function. Hence, a special study of MPPT has its merits. We will also
introduce the use of the second-quantization formalism here, where it is simpler, such that the stu-
dent will be familiar with the technique once it is used later in the chapter. There exist alternative
single-determinant partitioning schemes, such as, for example, the Epstein–Nesbet partitioning
[9, 10]. However, the use of these in combination with multi-configurational reference functions is
limited and will not be discussed in this chapter.

10.2.1 The Reference Function

The preceding sections leave us in the position of being able to discuss the Møller–Plesset PT
without any new twists or approximations as compared to the Rayleigh–Schrödinger approach.
However, let us first inspect the implications of our reference function’s being a single Slater deter-
minant (SD). This is at this time a bit tedious, but it will help us in understanding the procedure and
decisions that will be made at the CASPT2 level of theory. Due to the single-determinant nature of
the self-consistent field (SCF) wave function the one- and two-electron particle density matrices,
expressed in the basis of the SCF canonical orbitals, reduce to

Dij = 2𝛿ij (10.66)

and

Γijkl = 4𝛿ij𝛿kl − 2𝛿il𝛿jk , (10.67)

and correspondingly the closed-shell SCF energy (an expectation value, not an eigenvalue),
expressed in spatial doubly occupied orbitals, is compiled as

ESCF = 2
∑

i
hii +

∑
ij
[2(ii|jj) − (ij|ji)] , (10.68)

note that we have not added the constant corresponding to the nucleus–nucleus repulsion, VNN, as
is conventionally added to the electronic SCF energy. The corresponding orbital Fock operator, is
written as

f̂pq(Ψ(0)) = Êpq

(
hpq +

∑
k
[2(pq|kk) − (pk|kq)]

)
(10.69)

= Êpq(hpq + 𝑣pq(Ψ(0))) , (10.70)

note that the summation over the orbitals k is in terms of the occupied orbitals of the reference
SCF wave function Ψ(0) – this part of the equation expresses the interaction of a single electron
with all other electrons. Hence, the recursive nature of the operator. This operator will yield the
Fock matrix, which on diagonalization produces the canonical orbitals and the eigenvalues 𝜖i – the
orbital energy of canonical orbital i. At convergence, the orbitals in the summation, expressing the
electron density, are identical to the canonical orbitals – self-consistency is reached.

Let us define a molecular Fock operator as

F̂(Ψ(0)) =
∑
pq

f̂pq(Ψ(0)), (10.71)

which has the following expectation value for the restricted closed-shell SCF wave function:

⟨Ψ(0)|F̂(Ψ(0))|Ψ(0)⟩ = 2
∑

i
𝜖i , (10.72)



�

� �

�

10.2 Møller–Plesset Perturbation Theory 315

where the summation runs over the n doubly occupied spatial orbitals and their associated orbital
energy (whereas in Eq. (10.71) the double summation runs over all spatial orbitals, note the index
usage according to Section 1.5). The orbitals energies, 𝜖i, in the canonical SCF basis is expressed as

𝜖i = hii +
∑

j
[2(ii|jj) − (ij|ij)]. (10.73)

This allows us to write the restricted closed-shell SCF electronic energy as

ESCF = 2
∑

i
𝜖i −

∑
ij
[2(ii|jj) − (ij|ji)] . (10.74)

In the sum of the orbital energies we sum the interaction energies of one electron with all other
electrons. This summation will double-count the electron–electron interaction, hence the subtrac-
tion of the latter term in the expression above to remove the double counting. Alternatively, we can
write the SCF energy without making explicit use of the two-electron integrals:

ESCF =
∑

i
(hii + 𝜖i). (10.75)

To further elaborate on the implications, a given molecular Fock operator – i.e., the interaction
field defined by the set of occupied canonical orbitals – has eigenfunctions which are determinants
of n orbitals selected out of the full set of occupied and virtual canonical orbitals. We note that
there is one determinant which corresponds to the determinant of only the occupied canonical
orbitals – the self-consistent solution – while the other determinants, although they certainly are
valid eigenfunctions of the given molecular Fock operator, they do not correspond to self-consistent
excited states. This is, however, not a requirement or a problem for perturbation theory. We only
require that any Hamiltonian operator we use has a set of eigenfunctions which span the full Hilbert
space of the system and that we can express them in a systematic and efficient way.

10.2.2 The Partitioning of the Hamiltonian

Now we naturally follow Møller and Plesset, who suggested using as a reference Hamiltonian the
molecular Fock operator, Ĥ0 = F̂, that is, the total Hamiltonian is partitioned as follows,

Ĥ = ĥ(1) + V̂

= F̂ + 𝜆

(
V̂ −

∑
pq

Êpq𝑣pq

)
. (10.76)

By defining ̂ as the term in parentheses and introducing a constant C (to be determined later), we
get,

Ĥ = (F̂ + C) + 𝜆(̂ − C). (10.77)

Note that, while the RHS expression in Eq. (10.76) is general, this partitioning depends on the
reference function – the Fock operator is a function of the electron density of the reference state.
This trivially gives us the reference energy,

E(0)
MP = ⟨Ψ(0)|F̂ + C|Ψ(0)⟩ = 2

∑
i
𝜖i + C, (10.78)

and the first-order correction of the energy,

E(1)
MP =

⟨
Ψ(0)|V̂ −

∑
pq

Êpq𝑣pq − C|Ψ(0)

⟩
= ⟨Ψ(0)|̂|Ψ(0)⟩ − C. (10.79)
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The energy corrected to first order (recall Eq. 10.5) is identical to the SCF energy,

E[1]
MP = EMP1 = ⟨Ψ(0)|F̂|Ψ(0)⟩ + C + ⟨Ψ(0)|̂|Ψ(0)⟩ − C

= ⟨Ψ(0)|F̂ + ̂|Ψ(0)⟩ = ESCF . (10.80)

That is, the SCF total energy of the determinant is in general recovered only after the first-order
correction and actual corrections to the SCF energy appear first at second order in the perturbation
expansion. An alternative approach is to set C = ⟨Ψ(0)|̂|Ψ(0)⟩, using a shifted-Ĥ0 operator. In this
approach we have that E(0) = ESCF and E(1) = 0, and for higher orders of the correction the parame-
ter disappears altogether due to the orthonormality of the reference states – in all, the modification
could be considered semantic. In fact, the only significant difference is that the SCF determinants
are now eigenfunctions of the shifted-Ĥ0 operator, something which we will meet in association the
description of some of the multi-configurational reference function approaches discussed below.

To continue, the second-order correction to the energy can be computed as

E(2)
MP = ⟨Ψ(0)|̂|Ψ(1)⟩ = ⟨Ψ(0)|Ĥ − Ĥ0|Ψ(1)⟩ , (10.81)

which suggests that we need to explicitly resolveΨ(1), something we will do in the following section.

10.2.3 The First-Order Interacting Space and Second-Order Energy Correction

In order to proceed, we need to find the states with which, to first order, the reference function
will interact. Before that, however, let us contemplate the impact of this statement. As we explore
the effect of the excited states of the unperturbed system on the first-order correction to the wave
function, we note that there is a hidden simplification in the equations. In our general ansatz,
Eq. (10.23), we imply a summation over all excited states. However, upon examination of the
equation for the corresponding coefficients of the first-order corrections (see Eq. 10.25) we find
that only excited states which interact with the reference state over the perturbation potential have
coefficients which are non-zero. We call this space the first-order interacting space, a space much
smaller than the full Hilbert space. For the SCF reference determinant this translates to the fact
that the first-order interacting space contains determinants which at most correspond to double
replacements of orbitals from the reference SD.

For a given Fock operator, that is, once we have defined the reference SD which generates the ref-
erence electronic density and the operator, we can generate all excited states (eigenfunctions of the
unperturbed system) for that particular operator by doing replacements of the occupied orbitals
with the virtual (unoccupied) orbitals, starting with one, then two, and so on. As noted above,
these “excited states” do not correspond to the true self-consistent excited states of the SCF pro-
cedure – that would require us to iteratively redefine the electronic density of the Fock operator
to be self-consistent. One would then assume that the first-order correction to Ψ(0) would corre-
spond to such generated eigenfunctions by doing a single excitation – from an occupied to a virtual
orbital – that is, to form states as

Ψa(0)
i = ÊaiΨ(0) . (10.82)

That would require us to form matrix elements such as

⟨Ψ(0)|Ĥ − Ĥ0|Ψa(0)
i ⟩ = ⟨Ψ(0)|Ĥ|Ψa(0)

i ⟩ = fai = 0 (10.83)

when we determine the coefficients of those states in the first-order correction to the wave function
(see Eq. 10.23). However, as seen above, the matrix element is identical to zero: the second term



�

� �

�

10.2 Møller–Plesset Perturbation Theory 317

vanishes since the reference state is an eigenstate to Ĥ0 while the first term is zero due to the varia-
tional minimization of the SCF energy – the Fock matrix is diagonalized such that these elements
are identical to zero (Brillouin’s theorem).

Let us now (i) construct the excited states, (ii) obtain their coefficients in the first-order corrected
wave function, and (iii) subsequently compute the second-order correction of the energy. We do this
using both spin-specific and spin-averaged operators, the latter used in the second quantization
formalism, as they operate on the reference closed-shell single determinant. In the first case the
procedure will be trivial, while in the second case the maths will not be kind to us. The latter
will train us for the ordeal that will come when generating excited states for multi-configurational
reference functions, a procedure which is always done in the spin-averaged formalism. Here we
will have to introduce a new strategy to work around the problem.

We start with the spin-specific case where the replacement operator is expressed as â†
a𝜎 âi𝜎 . In it

we will have an operator that annihilates an electron with spin 𝜎 in occupied orbital i and places
an electron with the same spin in virtual orbital a. For the rest of this subsection, on the use of
spin-specific replacement operator, we will use spin-orbitals and index accordingly – that is, no
explicit index for the spin. As discussed above the ground-state reference function will not interact
with states that correspond to a single replacement – we need double replacements. To proceed, we
will represent the doubly excited states as

Ψab
ij = â†

bâjâ
†
aâiΨ(0) . (10.84)

In a setting of using normalized molecular spin-orbitals the replacement operators will generate
a new normalized determinant. Moreover, we note that these generated states are orthogonal – a
desirable property. Finally, we have to take the four-fold permutational symmetry, Ψab

ij = Ψba
ji =

Ψab
ji = Ψba

ij into account. That is, the first-order wave function is expressed as

Ψ(1) =
∑
a>b
i>j

cijabΨab
ij , (10.85)

where the restricted summation over the spin-orbitals is introduced to include only the unique
excited states. The individual coefficients are computed as

cijab =
⟨Ψ(0)|V̂ |Ψab

ij ⟩
E(0) − Eab

ij

. (10.86)

The denominator trivially reduces to 𝜖i + 𝜖j − 𝜖a − 𝜖b since Eab
ij = E(0) − 𝜖i − 𝜖j + 𝜖a + 𝜖b. The

numerator is computed to be

⟨Ψ(0)|V̂ |Ψab
ij ⟩ = (ai|bj) − (aj|bi). (10.87)

Thus, the first-order correction to the wave function is expressed as

Ψ(1) =
∑
a>b
i>j

(ai|bj) − (aj|bi)
𝜖i + 𝜖j − 𝜖a − 𝜖b

Ψab
ij . (10.88)

We are now in a position to compute the second-order energy correction in terms of spin-orbitals
as

E(2) = ⟨Ψ(0)|V̂ |Ψ(1)⟩ = ∑
a>b
i>j

[(ai|bj) − (aj|bi)]2

𝜖i + 𝜖j − 𝜖a − 𝜖b
. (10.89)
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If we unrestrict the summation, expand the square expression and finally sum over the spin we
obtain the second-order correction of the energy in spatial orbitals as

E(2) = 1
4

∑
abij

[(ai|bj) − (aj|bi)]2

𝜖i + 𝜖j − 𝜖a − 𝜖b

= 1
2

∑
abij

(ai|bj)2

𝜖i + 𝜖j − 𝜖a − 𝜖b
− 1

2
∑
abij

(ai|bj)(aj|bi)
𝜖i + 𝜖j − 𝜖a − 𝜖b

(10.90)

where we use the fact that the
∑

(ai|bj)2 and
∑

(aj|bi)2 terms are equal, since they are independent
of the order of summation, now we switch to spatial orbital indexation

E(2) = 2
∑
abij

(ai|bj)2

𝜖i + 𝜖j − 𝜖a − 𝜖b
−

∑
abij

(ai|bj)(aj|bi)
𝜖i + 𝜖j − 𝜖a − 𝜖b

=
∑
abij

(ai|bj)[2(ai|bj) − (aj|bi)]
𝜖i + 𝜖j − 𝜖a − 𝜖b

. (10.91)

We have obtained the appropriate equations for the computation of the second-order correction
to the energy expressed in both spin-orbitals (see Eq. 10.90) and spatial orbitals (see Eq. 10.91). We
did so by using a technique expressed in spin-orbitals, which provided us with (i) an easy way to
generate orthonormal excited states and (ii) trivial equations to compute the corresponding coef-
ficients for the first-order correction to the wave function. In closing this passage, we note that
the computation of the second-order correction of the energy in the closed-shell case of MP can
be solved in a single step. We do not need to explicitly store the coefficients of the first-order cor-
rected wave function – these are evaluated from analytical integrals which are computed on the
fly as we need them. This is a luxury we will not find in the multi-configurational reference func-
tion version of the theory – here the coefficients have to be computed in an iterative procedure and
need to be explicitly stored before we compile the second-order correction to the energy. It should
also be pointed out that the summations in the above equations run over all orbitals in the system.
It is common in practical calculations to reduce the ranges by ignoring the lowest-lying occupied
orbitals and/or the highest-lying virtual orbitals. In the first case – what is usually known as frozen
core approximation – the inner occupied orbitals are not considered when generating the first-order
interacting space, but their Coulomb potential must still be taken into account.

We will now see how we would proceed if we had to repeat these steps using spin-averaged
replacement operators in association with a second-quantized Hamiltonian. The procedure will,
to some extent, introduce a formalism that is not obviously simpler, however, it will be a general
recipe that will guarantee that the generated states have the same eigenvalues of the spin opera-
tors Ŝ2 and Ŝz as the reference functions, since Êpq commutes with these operators. We start now
with the process of defining the first-order interacting space. Here we note that the operator Êai
will, when it operates on a single closed-shell SD, generate two determinants, one in which an 𝛼
electron has been replaced and another for the 𝛽 electron. Thus, we have that an orthonormalized
singly excited state is expressed as,

Ψa
i = 1√

2
ÊaiΨ(0) , (10.92)

since

⟨Ψb
j |Ψa

i ⟩ = ⟨Ψ(0)|ÊjbÊai|Ψ(0)⟩ = 2𝛿ij𝛿ab .

Again, for the reasons discussed above, we need excited states that are doubly excited relative to the
reference function if we are to form the first-order correction to the wave function. We now explore
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the normalization using a pair of replacement operators. We define doubly excited states as

Ψab
ij = ÊbjÊaiΨ(0) , (10.93)

for which we have the squared norm

⟨Ψab
ij |Ψab

ij ⟩ = 4 + 4𝛿ij𝛿ab − 2𝛿ij − 2𝛿ab . (10.94)

This is consistent with the fact that each replacement operator generates two determinants when
operating on a closed-shell determinant. In the trivial case of no equal indices, i ≠ j and a ≠ b,
applying the two replacement operators we should get four determinants. This leads us to conclude
that we need to incorporate the normalization of the excited states as we use them in our equations.
Let us now explore the orthogonality within the set under a permutation of the indices. A double
permutation, which translates to a change of order in the application of the replacement operators,
does not cause any difference in the generated excited states, since

ÊbjÊai = ÊaiÊbj + 𝛿ajÊbj − 𝛿bjÊaj , (10.95)

where the two latter terms for obvious reasons disappear, that is Ψab
ij = Ψba

ji . However, under the
condition of a single permutation of the virtual or the occupied indices, we find that the generated
determinants are not identical, but they obey the relation

⟨Ψba
ij |Ψab

ij ⟩ = ⟨Ψab
ji |Ψab

ij ⟩ = −2 − 2𝛿ij𝛿ab + 4𝛿ij + 4𝛿ab , (10.96)

which implies that we not only have to normalize the states generated by Eq. (10.93): we have
to orthonormalize them. Given the above result in the spin-specific approach we are guaranteed
that the generated excited states are not redundant, except, of course, when they are identical by
not properly constraining the indices in Eq. (10.93). Hence, we should not have to worry about
redundancy and its elimination – this has to be considered for the case of a multi-configurational
reference function. We note that some, if not all, of the non-orthogonality can be removed by form-
ing the appropriate linear combinations asΨab,±

ij = Ψab
ij ± Ψba

ij , corresponding to a singlet and triplet
coupling of the virtual orbitals. This is achieved in a similar manner to how configurations of two
electrons in two orbitals are linearly combined to produce singlet and triplet spin eigenstates with
Ms = 0.

Let us, for the sake of convenience, simply index the doubly excited states generated in Eq. (10.93)
with a compound index I = I(i, j, a, b), such that Ψab

ij = ΨI . To resolve the issue of orthonormaliza-
tion we form the overlap matrix

SIJ = ⟨ΨI|ΨJ⟩ , (10.97)

which we subsequently diagonalize

s = U†SU , (10.98)

where s is a diagonal (L × L) matrix with the eigenvalues and U is the eigenvector matrix. Since in
closed-shell MPPT L can be limited to run over just the non-redundant space of double excitations,
U is guaranteed to be square. However, in the general case the size of U will be (M × L), where
M is the size of the original partially redundant double excitation space. However, we proceed by
combining the eigenvectors with the eigenvalues according to

Ũ = Us−
1
2 . (10.99)

We now have a set of orthonormalized doubly excited states which are computed as

Ψ̃I =
∑

J
ŨJIΨJ . (10.100)
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This will then render the equations for the computation of the coefficients in the first-order cor-
rection to the wave function and the second-order correction to the energy to be, starting with the
former,

Ψ(1) =
∑

I
cIΨ̃I (10.101)

with the coefficients as

cI =
⟨Ψ(0)|V̂ |Ψ̃I⟩

𝜖i + 𝜖j − 𝜖a − 𝜖b
, (10.102)

where the indices of the eigenvalues of the Fock operator are resolved for the compound index I.
The second-order energy correction is now computed as

E(2) =
∑

I

⟨Ψ(0)|V̂ |Ψ̃I⟩2

𝜖i + 𝜖j − 𝜖a − 𝜖b
. (10.103)

Before we are finished here, let us break this down one step further and use a matrix representa-
tion all along. First we define the following matrices and vectors,

(H0)IJ = ⟨ΨI|Ĥ0|ΨJ⟩ (10.104)

and

V I = ⟨ΨI|V |Ψ(0)⟩ . (10.105)

We transform these matrices to the space of the orthonormalized excited states,

H̃0 = Ũ†H0Ũ (10.106)

and

Ṽ = Ũ†V . (10.107)

The coefficients C̃ in the expression for the first-order correction to the wave function, are found
by solving

(H̃0 − E(0)𝟏)C̃ = −Ṽ , (10.108)

and the second-order correction to the energy is expressed as

E(2) = C̃†Ṽ . (10.109)

A final note here, in this approach we will be forced to use a two-step approach – first compute the
coefficients and then the energy. With this we are now ready to discuss some particularities of the
CASPT2 and some other related methods.

10.3 State-Specific Multi-Configurational Reference Perturbation
Methods

After this rather lengthy introduction to perturbation theory, in this section we will, in chronolog-
ical order, present the four most popular versions of multi-configurational reference perturbation
theory, namely the complete active space second-order Møller–Plesset (CAS-MP2) [11], the
complete active space second-order perturbation theory (CASPT2) [12, 13], the multi-reference
second-order Møller–Plesset (MRMP2) [14–17] and the n-electron valence state second-order
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perturbation theory (NEVPT2) [18–20]. In particular, we will devote special attention to the
CASPT2 method and present it in some detail, while the three other approaches are presented
more briefly and in order to mention the fundamental differences between the approaches. Briefly,
the major differences between these four methods are associated with the initial selection of the
reference functions Ψ(0) and the partitioning of the Hamiltonian into the reference Hamiltonian,
Ĥ0, and the perturbation potential, V . We would also like to point out that the three latter methods
CASPT2, MRMP2 and NEVPT2 have in common a diagonalize-then-perturb approach. That is, the
CASSCF equations are effectively solved via a diagonalization-like approach and the dynamic cor-
relation is introduced using perturbation technique. The CAS-MP2 method, on the other hand, is a
hybrid somewhere in between a diagonalize-then-perturb and a perturb-then-diagonalize approach
(see section 10.4 et seq.). The drawbacks and advantages of the four different approximations
are discussed. In addition to these four versions of multi-configurational reference perturbation
theory, a number of other flavors exist. They will not, however, be discussed in this chapter, mostly
because they have not, to date, made any significant impact on standard applications. Those desir-
ing a complete list of other such methods are recommended to consult the review paper by Lischka
and co-workers [21] and specifically the subsection on “Mutireference [sic] Perturbation Theory”.

10.3.1 The Generation of the Reference Hamiltonian

Before we proceed, however, let us address an issue relevant to most versions of multi-configura-
tional reference perturbation theory beyond single determinant RSPT: What to do if (i) our ref-
erence function is not an eigenfunction to Ĥ0, and (ii) we have only exact knowledge about the
reference functions, and not about the complementary functions that extend to the full Hilbert
space. In this context there would be a problem to apply RSPT to known wave function models. Let
us address the first problem here by constructing a new operator to solve the problem as follows.
Let us assume that we have an operator, Ô, for which our reference and complementary states are
not eigenfunctions, but which we for some practical reason want to use. Then an initial operator
can be constructed for the model space – the space spanned by all our reference functions – as

̂̃O =
∑

i
|Ψ(0)

i ⟩⟨Ψ(0)
i |Ô|Ψ(0)

i ⟩⟨Ψ(0)
i | , (10.110)

for which now all the functions Ψ(0)
i of the model space are eigenfunctions. This has now solved the

first issue. The second problem is related to the fact that in most quantum chemistry simulations
one does not have explicit access to the eigenfunctions of the complementary space. Hence, let us
further assume that we can construct a complementary space to our model space, with functions
that are all orthonormalized. To proceed we note that to the general expression above we are at
liberty to add any complementary space we can construct, as long as these functions are mutually
orthonormal. In that respect we can rewrite the expression above as

̂̃O =
d∑

i=1
|Ψ(0)

i ⟩⟨Ψ(0)
i |Ô|Ψ(0)

i ⟩⟨Ψ(0)
i | + ∞∑

i=d+1
|𝜓i⟩⟨𝜓i|Ô|𝜓i⟩⟨𝜓i| , (10.111)

where Ψ(0)
i are our d reference functions, which we know exactly, and 𝜓i are artificial functions

with the properties ⟨𝜓i|𝜓j⟩ = 𝛿ij and ⟨Ψ(0)
i |𝜓j⟩ = 0. This now solves the second problem – the lack

of a complete knowledge of all eigenfunctions. The remaining obstacle is the construction of the
artificial complementary space. Here a standard procedure is used, applying sets of spin-averaged
electron replacement operators to our known reference wave functions – in MPPT this procedure
actually leads to true eigenfunctions of the molecular Fock operator – combined with the operator
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Q̂ = 1 − P̂ (see Eq. 10.18) and the orthonormality conditions, to generate arbitrary complementary
spaces.

10.3.2 CAS-MP2 Theory

In 1988 McDouall and co-workers published the first practical solution for extending normal
single-configuration MPPT to the case of multi-configuration reference functions, in particular
using a CASSCF reference function [11]. Their procedure is based on a Löwdin-type partitioning
[22] of the full Hamiltonian into the subspace of the electronic configurations (Slater determinants
or configuration state functions), and the complementary space. The resulting equations are
subsequently solved using simple MPPT. Let us outline, in some detail, the approach here. We
define a model space that includes all the CASSCF states. In this aspect we have that the projection
operators P̂ and Q̂ play the same role as in the section on the multi-state case (see section 10.4).
In this formalism we divide the Hamiltonian by blocks into P and Q spaces. In particular we note
that P̂ =

∑
i|Ψ(0)

i ⟩⟨Ψ(0)
i |, where Ψ(0)

i are solutions to the CASSCF equations. We then introduce a
transformation, U , which transforms the Hamiltonian into a representation in which the P and Q
spaces are decoupled, that is(

HPP HPQ

HQP HQQ

)
U = U

(
Heff 𝟎
𝟎 W∗

)
. (10.112)

In this matrix representation HPP = PHP and so on. For the model space we have the normal
CASSCF solutions to the time-independent Schrödinger equation,

P̂ĤP̂Ψ(0)
i = E(0)

i Ψ(0)
i . (10.113)

The transformation matrix, U , will have diagonal blocks in which the transformation is arbitrary,
for the sake of convenience we set the matrix to have the form

U ≡
(
𝟏 −CT

C 𝟏

)
, (10.114)

where C is a set of column vectors, one for each function in the model space. This now generates
two working equations,

(Heff)ij = (HPP)ij + (HQP)T
i Cj (10.115)

and

(HQP)i + HQQCi =
∑

j
(Heff)jiCj , (10.116)

where two subindices indicate a matrix element, and one subindex indicates a whole column. The
total energy for state i is then approximated as

Ei ≈ ⟨Ψ(0)
i |Ĥeff|Ψ(0)

i ⟩ . (10.117)

McDouall and co-workers point out that this approach – a hybrid approach between a
diagonalize-then-perturb and a perturb-then-diagonalize scheme – comes with two advantages.
First, single-excitation contributions are zero, and second, the off-diagonal correction of Eq.
(10.115) is expected to be small and can be ignored. The energy is now expressed as

Ei ≈ E(0)
i + ⟨Ψ(0)

i |(ĤQP)T
i Ĉi|Ψ(0)

i ⟩ , (10.118)
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where X̂i is the operator representation of the ith column of matrix X . What remains now is to com-
pute C using MPPT theory. The authors note that one can approximate Eq. (10.116) by restricting
the summation on the RHS to only include the same C-vector as on the LHS – i.e., taking only j = i,
an approximation which affects the results only at the third order of the perturbation. This leaves
us the following equation,

Ci = −(HQQ − (Heff)ii𝟏)−1(HQP)i . (10.119)

We can now proceed solving this by applying the follow procedure. First, the inverse problem in
Eq. (10.119) is approached with the use of a power series expansion. Second, sums over states are
replaced with sums over orbitals. Third and finally, the diagonal elements of the matrix to invert are
replaced with orbital energy differences from the diagonal elements of some reference one-electron
Hamiltonian ĥi. To be explicit, the authors used the power series expansion

(A − B)−1 = A−1 + A−1BA−1 +… , (10.120)

where A is the matrix of the diagonal elements of HQQ − (Heff)ii𝟏. Moreover, for the reference
one-electron Hamiltonian the authors used different ĥi for each reference state i. This makes sense
since in some reference state (read determinant or possibly configuration state function) an active
orbital might be occupied while in another state it is empty. Using a unified ĥ operator under these
conditions would render the perturbation expansion to diverge. However, the rules for the defi-
nition of the ĥi are to some extent ad hoc and sensitive to the orbital representation, McDouall
and co-workers have selected to use a localization of the active orbitals leading to an orthogonal
valence-bond expansion. As for the performance with respect to computer time the authors state
that the method will cost n times the cost of a single-reference MP2, where n is the number of
functions in the reference space. This fact means that the approach is not often used. Furthermore,
the literature lacks any benchmarks comparing this approach to any of the other MRPT methods
presented in this section. From a theoretical ground there is no reason for the CAS-MP2 approach
to be worse than the methods that will follow, rather it might actually have a slight edge due to
the use of a hybrid approach. However, the poor scaling with the size of the CI expansion will, in
general, render the approach not useful.

10.3.3 CASPT2 Theory

Here we present the mathematical equations which govern the complete active space second-order
perturbation theory (CASPT2) method, a second-order perturbation method.1 More specifically, we
will present the state-specific CASPT2 method (SS-CASPT2), in which each state is treated inde-
pendently. In this approach we note that, if we have a perturbation series which is convergent,
each of the states we consider will, as we go towards infinite order, get the energy and wave func-
tion correct. We will be able to compute the ground and any excited states which are spanned by
the active space of the reference CASSCF wave function. In general this will work very well if the
original CASSCF states are good qualitative representatives of the final states. However, conver-
gence will be slow if the reference states are poor and the successive iterations over the order of the
perturbational strength parameter are desperately needed for the corrected wave function to mir-
ror the exact wave function of the state under study in a qualitative way. Examples of this can be
numerous, for instance, the lack of dynamic electron correlation in the CASSCF model can cause

1 A review of the state-specific CASPT2 method was presented by Andersson and Roos in 1995 [23]. This section is
an extension of that review and we recommend students to consult that material in parallel.
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the reference functions to artificially mix states beyond the one they are trying to represent to be
used in a perturbational approach. We will present below approaches that will fix these problems,
but more on that later.

The CASPT2 method is based on (i) a multi-configurational reference wave function, the CASSCF
wave function, as described in detail in Chapter 6, and (ii) a partitioning of the Hamiltonian, such
that it reduces down to Møller–Plesset partitioning, that is, the definition of Ĥ0 is the same – a
one-electron operator – if the CASSCF wave function is reduced down to a single-determinant
wave function. The selection of Ĥ0 is for reasons of simplicity required to be a one-electron oper-
ator, alternative but similar partitionings have been introduced [24] but have over the years been
abandoned due to suboptimal performance. As we proceed we face two issues. First, we need a
generalization of the Fock operator to wave functions of arbitrary spin and number of open shells.
Second, we need to formulate a Ĥ0 for which the CASSCF wave function is an eigenfunction.

10.3.3.1 The Partitioning of the Hamiltonian
Let us start with the mathematical description of the SS-CASPT2 method, as it is applied to a gen-
eral CASSCF state. The generalized Fock operator, the Ĥ0 operator of the SS-CASPT2 method, is
defined as

F̂(D) =
∑
pq

fpq(D)Êpq , (10.121)

where D is the CASSCF one-particle reduced density matrix of the state of interest, represented by
the state Ψ(0). The scalar value fpq is computed as

fpq(D) = 1
2

𝛽∑
𝜎=𝛼

⟨Ψ(0)|[â†
p𝜎 , [âq𝜎 , Ĥ]]|Ψ(0)⟩ (10.122)

= hpq +
∑

rs
Drs

[
(pq|rs) − 1

2
(pr|qs)

]
, (10.123)

which in the case of the standard closed-shell single-determinant case will boil down to the conven-
tional matrix elements of the molecular orbital Fock operator. In passing we note that the matrix f
formed by the fpq values can be broken down into nine blocks based on the division of the orbitals
into inactive, active and virtual orbitals,

orbital class inactive active virtual

inactive

active

virtual

𝜖i fit 0

fti 𝜖t fta

0 fat 𝜖a

The diagonal block of this matrix (green boxes above) can be diagonalized independently resulting
in four remaining non-zero blocks (red boxes) (the inactive–active, active–inactive, active–virtual,
and virtual–active blocks) and two zero blocks (the inactive–virtual and virtual–inactive blocks).
In the initial implementation of CASPT2 the Fock operator was approximated to be diagonal to
simplify the calculation and compute the second-order energy and coefficients of the first-order
wave function simultaneously [12]. However, this approximation, called D-CASPT2, proved to be
too severe and later an iterative implementation was presented in which the non-diagonal nature
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of the Fock matrix is kept [13], the N-CASPT2 methods. This prefix has now been dropped, the
D-CASPT2 results are very poor and all CASPT2 results now refer to the use of the full Fock matrix.

10.3.3.2 The First-Order Interacting Space
We have now solved our first problem – we have a Ĥ0 operator, however, in contrast to MP theory
our CASSCF reference wave functions are not eigenfunctions to the generalized Fock operator.
In this respect we will have to follow the recipe described a couple of sections above, that is we
introduce the identity as defined by the projection operators

1 = |Ψ(0)⟩⟨Ψ(0)| + P̂K + P̂SD + P̂TQ +… , (10.124)

in which the projection operators P̂K, P̂SD, etc., are defined as

P̂X =
∑
i∈X

|Ψi⟩⟨Ψi| ,
where Ψi is a orthonormal state of the X space (X ∈ {K, SD,TQ,…}). More specifically, P̂K projects
into the complementary space, wave functions corresponding to all other possible wave functions
that are a solution in the CAS space, but are not in the reference space. P̂SD corresponds to states
which are single or double replacements (SD)2, relative to the reference function, generated
as ÊpqÊrs|Ψ(0)

i ⟩. Note that, as in the case of MPPT, single replacements can be safely ignored,
since for a variationally optimized CASSCF wave function their interaction with Ψ(0) is zero
(Brillouin–Levy–Berthier theorem). We selected this approach before for a reason. Let us visit the
SD space in a bit more detail, since if we are only to compute second-order corrected energies
we need only worry about the design and structure of this space. In the SD space the electron
replacements (see below) are complete or partial replacements out of the inactive–active space
into the active–virtual space. This includes the so-called semi-internal replacements, involving the
coupling of an internal replacement (inactive–active replacement) with an external replacement
(inactive–virtual or active–virtual promotion). To present all the SD space, it is divided into eight
classes of operators acting on the reference wave function (VA,… ,VH), they are presented as:

internal

{
VA , k = 1 ∶ ÊtiÊu𝑣

VB , k = 2 ∶ ÊtiÊuj

semi-internal
⎧⎪⎨⎪⎩

VC , k = −1 ∶ ÊatÊu𝑣

VD , k = 0 ∶ ÊaiÊtu , ÊtiÊau

VE , k = 1 ∶ ÊtiÊaj

external
⎧⎪⎨⎪⎩

VF , k = −2 ∶ ÊatÊbu

VG , k = −1 ∶ ÊaiÊbt

VH , k = 0 ∶ ÊaiÊbj ,

where i and j are inactive orbital, a and b are virtual orbital, and t, u, and 𝑣 are active orbital
indices of the CASSCF wave function. The classification as internal, semi-internal or external
corresponds to the number of virtual indices, 0, 1 or 2, respectively. The index k denotes the change
of number of electrons in the active space under the application of the replacement operator – this
is used in the NEVPT2 terminology to divide the first-order interacting space into subclasses

2 It is a confusing fact that both Slater determinants and the single and double replacement space of the first-order
interacting space in the literature are abbreviated SD. However, we hope that it will be clear from the context what
the abbreviation refers to.
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(see section 10.3.5 below). We note that the last case corresponds to the normal set of parameters
found in conventional MP2 theory and they are the ones that are the largest set. As in the case of
MPPT, non-orthogonalities in the first-order interacting space can be removed by taking linear
combinations of operators, as in ÊaiÊbj ± ÊbiÊaj.

Despite the block nature of F̂(D), we will not get a block-diagonal Hamiltonian – this would
translate to the correction vectors spanning the full Hilbert space. To overcome this we construct a
projected Ĥ0 operator as

Ĥ0 = |Ψ(0)⟩⟨Ψ(0)|F̂(D)|Ψ(0)⟩⟨Ψ(0)|
+ P̂KF̂(D)P̂K + P̂SDF̂(D)P̂SD

+ P̂TQF̂(D)P̂TQ +… . (10.125)

Thus, this Ĥ0 operator will be block-diagonal as follows

space 0 K SD TQ . . .

0

K

SD

TQ

...

H0
(0,0)

H0
(K,K)

H0
(SD,SD)

H0
(TQ,TQ)

. . .

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

which will assure us that the first-order correction to the wave function is completely defined by
the SD subspace.

Proceeding with a brief analysis of the SD space we first note that we will have a set of excited
states which are neither normalized nor orthogonal. Even worse, they are not necessarily lin-
early independent. Hence, orthonormalization and elimination will have to be included in the
process in which the overlap matrix SIJ in Eq. (10.97) is processed (block by block) to generate
a non-redundant set of orthonormalized excited states. This is now used to make the appropriate
transformations to generate the matrix H̃0 and the vector Ṽ . All this is used in the equation to derive
the coefficients of the first-order corrections to the wave function (see Eq. 10.108). Second, different
to standard MPPT, with the use of a single closed-shell determinant as a reference wave function,
the matrix of the unperturbed Hamiltonian will not be trivially diagonal, while still block-diagonal.
A brute force approach would be to diagonalize the matrix on the LHS, however, that would limit
the size of the calculations we could do – the space of the doubly excited states would be too large
for the explicit storage of the H̃0 matrix. Rather the Equation will have to be solved in an itera-
tive fashion using a preconditioned conjugate gradient approach computing vectors (known as 𝜎
vectors) of the form

𝜎 = (H̃0 − E(0)𝟏)C(1) , (10.126)

where C(1) is a trial vector of the coefficients of the excited states in the SD subspace. In this con-
text we will evaluate the matrix on the fly as we make the contraction (product) with the trial
vector. That is, the matrix H̃0 − E(0)𝟏 is not stored explicitly. Rather, as an element of the 𝜎 vector
is generated only those parts of the H̃0 − E(0)𝟏 matrix which are required are generated on the fly.
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Moreover, as the projection operator, P̂, is extended further to sets of two further replacements – the
TQ manifold, and so on – we achieve a continued block diagonalization of Ĥ0 over the blocks of
the reference function, the complementary CAS space, the SD space, the TQ space, etc.

We are now at the point at which we need to form the matrix elements (I, J are compound indices
for the states in the SD space)

(H0)IJ = ⟨ΨI|Ĥ0|ΨJ⟩ ,

SIJ = ⟨ΨI|ΨJ⟩ , and

V I = ⟨ΨI|V̂ |Ψ(0)⟩ ,
where

V̂ =
∑
pqrs

êpqrs(pq|rs) − Êpq

∑
rs

Drs

[
(pq|rs) − 1

2
(pr|qs)

]
. (10.127)

We will use these matrices and vectors to (i) eliminate linear dependence, (ii) introduce a
non-redundant orthonormal space of states in the SD space, (iii) commence the iterative pro-
cedure to compute the coefficients of the first-order correction to the wave function, and (iv)
compute E(2).

Before we continue let us examine, in some detail, the matrix elements which have to be com-
puted and what this is associated with (a complete list of all required equations for the compilation
of the CASPT2 energy are collected in the Appendix). We have that the wave functions ΨI and
ΨJ contain the product of two one-electron replacement operators, and so does V̂ , while Ĥ0 is a
one-electron operator and contains single replacement operators. Therefore, the worst case could
be expected to be the computation of matrix elements for Ĥ0. For example, for one of the external
cases (VH), we need to evaluate expressions such as∑

pq
⟨Ψ(0)

i |ÊkcÊldÊpqÊaiÊbj|Ψ(0)
j ⟩ . (10.128)

This and other expressions seem to indicate that n-particle density matrices up to five-particle
matrices would be needed, since there are five replacement operators. However, the general reduc-
tion (for a complete list of the equations up to the second-order correction of the energy see the
Appendix) will be such that the Hamiltonian will eliminate the four virtual indices, that is, a
CASPT2 implementation needs, in addition to the one- and two-particle density matrices, three-
and partially contracted four-particle density matrices (effectively of the size of a three-particle
density matrix). The actual storage and computation cost for all the n-particle density matrices (1-,
2-, 3- and partially contracted 4-particle density matrices) will scale in the range of m6–m8, where
m is the number of active orbitals. This seems to be tractable right now but, as will be seen later
in section 10.3.6, the density matrix renormalization group approach to CASSCF calculations will
facilitate large active spaces, at which point, when m can easily be of the order 102, the computation
and handling of the density matrices can become a serious bottleneck.

We are almost done. However, we should not forget to address the issue of size-extensivity of
the CASPT2 method. The CASSCF and MP2 methods (the latter at least in the case of closed-shell
systems) are size-extensive. Does this hold for the CASPT2 method too? Helgaker and co-workers
[3] show that since Ĥ0 is not additively separable (due to the projection operators present in the
Ĥ0 definition), the CASPT2 model is not a size-extensive perturbation model. Further, they note
that as the reference wave function increases the multi-configurational character, the extent of the
non-size-extensivity increases.
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10.3.3.3 Other Active Space References
The CASPT2 method, as should be clear from the preceding and following sections, is not free
of issues. To the just mentioned non-size-extensivity, we can add the possibility of intruder
states (10.1.2), the overstabilization of open-shell states (10.3.3.5) and the non-orthogonality of
the first-order wave functions (10.5). It should be noted that these problems are not specific to
CASPT2, and other multi-configurational reference perturbation methods can also show some
or all of them to some extent. There is, however, a simple – and not particularly useful – recipe
to solve or mitigate these problems: increase the active space size. From a purely theoretical
point of view, by increasing the active space size we approach the full CI solution, at which point
our reference CASSCF functions are the exact solutions, the zeroth-order Hamiltonian Ĥ0 is the
exact Hamiltonian and the perturbation V vanishes. It “solves” the problems by making the PT
treatment superfluous. From a practical standpoint, the exponential increase in the number of SDs
with the size of the active space makes the required CASSCF calculations intractable for anything
beyond about 20 orbitals, not to mention the PT2 step.

As described in Chapter 6, other approaches have been proposed to allow extending an active
space beyond what is practically possible with CASSCF, while keeping the number of SDs manage-
able. Two of these approaches are the restricted active space SCF (RASSCF) and generalized active
space SCF (GASSCF) methods. How can we apply a perturbative treatment to reference functions
based on RASSCF or GASSCF, instead of CASSCF?

The corresponding extensions of CASPT2, RASPT2 [25] and GASPT2 [26], have been published
relatively recently. In the case of RASPT2, the matrix representation of the Fock operator can be
easily obtained from the one in CASPT2, noting that now the active space is split into three different
subspaces:

orbital class inactive

active

RAS1 RAS2 RAS3 virtual

inactive

a
ct

iv
e

RAS1

RAS2

RAS3

virtual

𝜖i fit 0

fti

𝜖t

𝜖t

𝜖t

ftt ftt

fttftt

ftt ftt

fta

0 fat 𝜖a

where we see that the active–active block cannot be fully diagonalized, because the different RAS
spaces cannot be mixed without altering the reference wave function. The first-order interacting
space for a RASPT2 wave function contains all the eight classes considered for CASPT2 plus a fully
active class given by ÊtuÊ𝑣x, where all indices refer to active orbitals. This class is absent in CASPT2
because all possible excitations within the active space are already included in the reference or
complementary space, but in RASPT2 some of these excitations would violate the RASSCF restric-
tions and should therefore be included in the first-order interacting space. In GASPT2, for every
pair of not fully connected GAS spaces (where not all possible interspace excitations are allowed),
there exists a fully active class as in RASPT2.

The implementation of a rigorous PT2 treatment of such a structure poses some challenges. First,
including active–active excitations would require sorting out those that still fulfill the RAS or GAS
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Figure 10.3 CASPT2(12,12) and GASPT2(12,12) potential energy curves for Cr2. Reprinted with permission
from ref. [26]. Copyright 2016, American Chemical Society.

restrictions from those that do not – the former should be removed, the latter should stay in the
first-order interacting space. Furthermore, the computation of the matrix elements over Ĥ0 would
require four-particle density matrices, which would be impractical for larger active spaces, and
it is precisely for the use of large active spaces that we would like to use these methods. There-
fore, in the current implementations of both RASPT2 and GASPT2, an approximation is employed
in removing the active–active excitations from the first-order interacting space. The effect of this
approximation is a degradation in the accuracy of the perturbative treatment, but it is expected that
the possibility of using larger active spaces for the reference functions will compensate for it. As an
example, fig. 10.3 shows a comparison of CASPT2 and GASPT2 curves for the difficult case of Cr2,
where a CASPT2 calculation is still affordable. The GASPT2 calculation was done by splitting the
active space into six separate GAS spaces of two orbitals (bonding and antibonding) with two elec-
trons, with no interspace excitations allowed. The difference between the two curves around the
equilibrium geometry is attributed to the missing interspace excitations in the GASSCF treatment,
which GASPT2 cannot recover due to the approximation employed.

10.3.3.4 Benchmark Results
A few words on the quality of the CASPT2 results are opportune at this point. The very first bench-
mark of the CASPT2 method was conducted by Andersson and Roos [27]. In this benchmark,
molecular structures and binding energies were computed for some 27 molecules containing first-
and second-row atoms (H–Ne). The results indicate an accuracy in bond distances and bond angles
of 0.01 Å and 0–2 degrees, respectively. Furthermore, it is found that atomization energies are
underestimated by 3–6 kcal mol−1 times the number of unpaired electrons created in the atom-
ization process – the “correction” of this systematic error led to the so-called IPEA-shift tech-
nique, which is discussed below. Finally, the error in isogyric reactions – reactions which preserve
the number of unpaired electrons – was in the range of −2.5–1 kcal mol−1. In 2003 Guner and
co-authors [28] reported benchmark results for 11 pericyclic reactions of unsaturated hydrocar-
bons. In particular they studied properties such as transition state structures, reaction enthalpies
and entropies, and activation enthalpies and entropies. They reported, for example, mean absolute
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deviations (MAD) for the reaction and activation enthalpies of 1.6 kcal mol−1 and 1.7 kcal mol−1,
respectively, at the CASPT2/6-31G∗//CASSCF3 level of approximation. Schreiber and co-workers
[29] performed a comparative study of singlet (121 transitions) and triplet (71 transitions) vertical
excitation energies computed at the CASPT2 and the CC3 levels. They reported MADs of 0.08 eV
and 0.20 eV for the triplet and singlet transitions, respectively. These results, especially the organic
spectroscopic data, were summarized by Serrano-Andrés in a special issue of IJQC [30] in honor
of Björn O. Roos. In the same issue Pierloot [31] and Gagliardi [32] report on the state of the art
of CASPT2 studies of transition metal compounds and actinide chemistry, respectively. Recently
Budzák and collaborators established a database of ground-state and excited-state structures from
some 35 molecules. Again, it was demonstrated that the CASPT2 method yields deviations of only
0.01 Å in any bond type when compared to the “gold standard” coupled-cluster methods [33].

10.3.3.5 IPEA Shift
As mentioned above, Andersson and Roos reported large deviations in atomization energies – up
to 20 kcal mol−1. Initially this caused much alarm, however, after some analysis it was established
that this was a systematic error depending on the change of the number of unpaired electrons
in the process under study. That is, an imbalance in the treatment of the reference Hamiltonian,
Ĥ0, of closed-shell electrons with respect to unpaired electrons. In general this leads to too low
bond and excitation energies. To remedy this artifact, Andersson introduced corrections to the Fock
matrix, named G1, G2, and G3 [24]. Although these corrections could relieve the problem in some
cases, it was limited to situations where the energy gap between active and virtual orbitals is large.
Ghigo and co-workers [34], however, suggested an alternative shift which seemed to reduce the
systematic error significantly. In their analysis they identified that the systematic error could eas-
ily be resolved using a two-electron term, à la Dyall [35] (see section 10.3.5 on NEVPT2, where
it is described in some detail), in the zeroth-order Hamiltonian. This would, however, lead to an
increase in the computational expense, and a modification should preferably fit within the scope of
a one-electron-operator-based formalism. Ghigo et al. further noted that for closed-shell orbitals the
negative of the diagonal value of the Fock matrix corresponds to the ionization potential (IP), while
for an empty orbital the value corresponds to an electron affinity (EA). This is trivially the case for
the inactive and the virtual spaces, respectively, in the CASSCF model. For the active space, how-
ever, the situation is not that simple and the nature of the diagonal value is closely associated with
the occupation number. To proceed, let us reformulate Eq. (10.123) as an interpolation between the
two cases that the active orbital is doubly occupied (−IP) or empty (−EA),

fpp = −1
2
(Dpp(IP)p + (2 − Dpp)(EA)p) . (10.129)

Here we have an expression which is correct for Dpp = 0, 1, or 2 and in general mimics the behav-
ior of the diagonal elements of the Fock matrix for the active orbitals. In particular this expression
highlights that we will have a problem when an electron is attached to or removed from a singly
occupied orbital. As a result, the denominators of the coefficients in the first-order correction of
the wave function will be too small, the coefficients will be too large and thus contribute too much
to the second-order correction to the energy. This is what had been empirically found – the pertur-
bation energy is overestimated for open shells. Additionally, this will be yet another source for the
manifestation of intruder states.

We would like to have a formalism such that we would use an electron affinity if we excite into an
orbital and an ionization potential if we remove an electron from it. Ghigo and co-workers suggest

3 This acronym indicates that the study was conducted with a 6-31G∗ basis set, structures optimized at the CASSCF
level, and finally the energies are computed with the CASPT2 method.
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that this can be achieved by the introduction of a shift, the IPEA shift. In the case we move an
electron into an orbital p, we would like to shift Eq. (10.129) by the value

𝜎EA = 1
2

Dpp((IP)p − (EA)p) , (10.130)

while in the case of the removal of an electron from the same orbital, we would like to shift by the
value

𝜎IP = −1
2
(2 − Dpp)((IP)p − (EA)p) . (10.131)

This would be completely in line with the possibility of implementing a state-specific shift (see
Eq. 10.65), where in this case the summation is limited to the states in the first-order interacting
space and the shift is specific to each of the classes of states in this space. Subsequently Ghigo and
co-workers took a leap of faith – considering that the definition of and the value of (IP)p − (EA)p
is not well defined nor is it in general known – they suggested the use of a single parameter 𝜎,
to be determined from accurate calculations or experimental results. They conclude their study by
demonstrating, using a 𝜎 value of 0.25 Eh, that the computed dissociation energy errors for some 49
molecule can be reduced from more than 0.2 eV to less than 0.1 eV (see fig. 10.4). This value of the
shift, 0.25 Eh, has since then been the default value in the MOLCAS quantum chemistry program
package. [36] It should again be pointed out that this shift factor will be applied differently for each
of the eight different classes of the first-order interacting space (see Eq. 10.65, and read refs. [37]
and [38] for a detailed description of the implementation of the IPEA shift).

The IPEA-shift technique has, over the years, been an origin of irritation and many have criti-
cized the approach. Some claim the shift makes the CASPT2 method semi-empirical, others state
that the shift should be significantly larger, etc. [37, 39, 40]. To resolve the degree of “correctness”
and validity of the IPEA shift, Zobel and co-workers [38] recently reported results from (i) an exten-
sive study of literature of CASPT2 excitation energies, (ii) full configuration interaction benchmark
results compared with CASPT2 results, and (iii) extensive studies using different values of 𝜎. From
the results Zobel and co-authors observed that the correction scales with the amount of dynamic
correlation and is a function of the size of the basis set (see fig. 10.5). Thus they conclude that
the notion of an universal IPEA shift does not have any support and that the practice should be
abandoned.

10.3.4 MRMP2 Theory

About two years after the proposal and implementation of the CASPT2 theory, Hirao suggested
a variation of the theory named multi-reference second-order Møller–Plesset perturbation theory
(MRMP2) [14–17]. This proposal is similar in many respects to the CASPT2 theory and the differ-
ences will be briefly presented below. The major difference lies in the design of the Ĥ0 operator and
the definition of the first-order interacting space.

10.3.4.1 The Partitioning of the Hamiltonian
The zeroth-order Hamiltonian is trivially defined as

Ĥ0 =
∑

i
E(0)

i |Ψ(0)
i ⟩⟨Ψ(0)

i | , (10.132)

where Ψ(0)
i are CASSCF wave functions and E(0)

i are the reference energies defined as follows. First,
the reference energy is defined as a sum over orbital-energy-like terms, generalized orbital energies,

E(0)
i =

∑
p
𝜖pp⟨Ψ(0)

i |Êpp|Ψ(0)
i ⟩ , (10.133)
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Figure 10.4 Errors in the dissociation energy for 49 diatomic molecules obtained with the IPEA shift
parameter equal to 0.25 Eh and with no IPEA shift. Reprinted with permission from ref. [34]. Copyright 2004,
Elsevier.

where Êpp is the number operator (it returns the occupation number for the pth orbital). It is impor-
tant to note that these matrix elements are given in the orbital representation that diagonalizes the
diagonal blocks of the Fock matrix. In this orbital representation the generalized orbital energies
are computed as

𝜖pq = hpq +
∑

rs
Drs

[
(pq|rs) − 1

2
(pr|qs)

]
. (10.134)

10.3.4.2 The First-Order Interacting Space
While the CASPT2 and NEVPT2 methods (see section 10.3.5 below) define the first-order interact-
ing space by the use of replacement operators applied to the contracted CASSCF wave function(s),
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Figure 10.5 Mean signed errors (MSEE) in eV of CASPT2 vertical excitation energies compared to
experimental reference data for different ANO-RCC basis sets and IPEA shift values 𝜖 (in Eh) Reprinted from
ref. [38], published by The Royal Society of Chemistry, distributed under Attribution 3.0 Unported (CC BY
3.0) license.

the MRMP2 method defines the space by collecting all SDs that correspond to a single or double
replacement relative to the SDs that span the CASSCF CI space. In that respect this space is larger
than the corresponding space in, for example, the CASPT2 approach, however it comes with the
benefit that the representation provides a diagonal representation of Ĥ0. This space has, of course,
to be subjected to elimination of linear dependences.

We conclude this section by noting that the MRMP2 method is not used extensively and there
is a lack of any significant amount of benchmarking in the literature, compared to other MRPT
methods.

10.3.5 NEVPT2 Theory

The n-electron valence state for multi-reference perturbation theory (NEVPT2) was introduced
some 10 years after the CASPT2 method [18]. At the time three different versions of the method
were introduced: the totally uncontracted, the partially contracted (PC), and the strongly contracted
(SC). Different to CASPT2, NEVPT2 uses an Ĥ0 operator that includes two-electron terms, and the
method is attributed to avoid the problems with intruder states, which frequently cause issues in
CASPT2 studies. Thus, two of the major advantages that the method claims are (i) exempt from the
intruder state problem and (ii) the method is size consistent.

The totally uncontracted method entails a high computational cost and has not been used in
practical applications (for some recent developments, see the end of section 10.3.6). The two latter
versions, the PC-NEVPT2 and the SC-NEVPT2 versions, however, are in common use. Hence, we
will discuss these methods briefly.

10.3.5.1 The Partitioning of the Hamiltonian
Below, we will describe the Ĥ0, however, in the case of NEVPT2 this requires the generation of the
functions in the first-order interacting space – also known as perturbers, since they will perturb
the wave function as we include corrections through the perturbation expansion. We will, at this
point, assume that these perturbers are generated and denoted, Ψ{k}

l and Ψ{k}
l𝜇 , for the strongly and

the partially contracted NEVPT2 versions, respectively. Here k and l index the class and subclass,
respectively, of the first-order interacting functions, and 𝜇 is a particular member of such a sub-
class – this will become clearer in the next section. We can now write two different definitions of
the Ĥ0 operator, namely

ĤSC
0 =

CAS∑
m

|Ψ(0)
m ⟩E(0)

m ⟨Ψ(0)
m | + ∑

kl
|Ψ{k}

l ⟩E{k}
l ⟨Ψ{k}

l | (10.135)
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and

ĤPC
0 =

CAS∑
m

|Ψ(0)
m ⟩E(0)

m ⟨Ψ(0)
m | + ∑

kl𝜇
|Ψ{k}

l𝜇 ⟩E{k}
l𝜇 ⟨Ψ{k}

l𝜇 | , (10.136)

for the strongly and partially contracted versions of NEVPT2, respectively. The first term involves all
possible states of the CASSCF wave function, while the second term includes the normalized per-
turbers of the first-order interacting space. Since, after the next section, we have these perturbers,
we only need to find a way to obtain the associated “eigenenergies” E{k}

l∕l𝜇 . To do this, we will employ
Dyall’s Hamiltonian, Ĥ [35] (see below), in which the associated eigenvalues are simply computed
as

E{k}
l = ⟨Ψ{k}

l |Ĥ|Ψ{k}
l ⟩ (10.137)

for the strongly contracted case. For the partially contracted case a more elaborate procedure is
engaged. First a projected Hamiltonian, based on Ĥ, is formed with eigenfunctions and eigenval-
ues given by

P̂{k}
l ĤP̂{k}

l Ψ{k}
l𝜇 = E{k}

l𝜇 Ψ{k}
l𝜇 , (10.138)

where Ψ{k}
l𝜇 are spanned by the linearly independent functions Φ{k}

lm of the space S{k}
l .

Before we continue, let us mention Dyall’s Hamiltonian – here presented in a form invariant
to unitary rotations inside each orbital class (inactive, active, and virtual). This Hamiltonian is
introduced as an approximation to the electronic Hamiltonian and is subdivided, for computational
efficiency, into an inactive–virtual part (iv) and an active part (act) as

Ĥ = Ĥiv + Ĥact , (10.139)

where the inactive–virtual part is a simple one-electron diagonal operator,

Ĥiv =
∑

ij
fijÊij +

∑
ab

fabÊab + C, (10.140)

where we use the index definitions of Chapter 1, section 1.5. The constant C and the Fock matrix
elements fpq are defined below. For the active part of the operator, Ĥact, we have the following
expression,

Ĥact =
∑

tu
heff

tu Êtu + 1
2

∑
tu𝑣x

(tu|𝑣x)êtu𝑣x , (10.141)

where heff
tu = htu +

∑
i(2(tu|ii) − (ti|ui)) are the effective one-electron integrals, introducing the field

of the inactive electrons into the active part of the Hamiltonian. Furthermore, the constant C is
chosen to be,

C = 2
∑

i
hii +

∑
ij
[2(ii|jj) − (ij|ji)] − 2

frozen∑
k
𝜖k , (10.142)

with which the result is equivalent to the full Hamiltonian within the CAS space,

ĤΨ(0)
m = E(0)

m Ψ(0)
m . (10.143)

Finally the Fock matrix elements fpq are defined as

fij = −⟨Ψ(0)
m |â†

i Ĥâj|Ψ(0)
m ⟩ + 𝛿ijE

(0)
m (10.144)
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and

fab = ⟨Ψ(0)
m |âaĤâ†

b|Ψ(0)
m ⟩ − 𝛿abE(0)

m . (10.145)

In this fashion the Dyall Hamiltonian is equivalent to the Møller–Plesset Ĥ0 in the inactive and
the virtual space while in the active space it is the complete active space Hamiltonian. The latter
ensures that the NEVPT2 approach is a size-consistent method.

10.3.5.2 The First-Order Interacting Space
Here we will describe the first-order interacting space (also denoted the SD-space) for the strongly
contracted and the partially contracted schemes. In the SC-NEVPT2 version we will use only one
perturber from each class in the first-order interacting space, while in the PC-NEVPT2 method
we will include all possible states of the SD-space (just as in the CASPT2 method). The classes
are similar to the classification in the CASPT2 method (see section 10.3.3.2 above). The index k,
ranging from −2 to 2, represents the change in the number of electrons in the active space. An
additional index, l, is used to discriminate between subclasses when there are several types of oper-
ators belonging to the same k-class. We note that we have eight different types of subclasses, just as
in the CASPT2 method, although the primary classification scheme there was based on internal,
semi-internal, and external excitations, instead of the k index.

In the SC-NEVPT2 method a single perturber per subclass is generated as follows,

Ψ{k}
l = P̂{k}

l ĤΨ(0)
m , (10.146)

where Ψ(0)
m is the reference function of state m, and P̂{k}

l is the projector onto S{k}
l , the subspace of

all states in subclass l of class k. To some extent this is similar to the first iteration in a CI solver
algorithm. Since only one perturber is picked from each type of class there will be no problem with
linear dependences.

For the PC-NEVPT2 method, however, we will employ all possible states in each subclass, just
as in the CASPT2 method, and as in the CASPT2 case we will have possible linear dependences.
Thus a similar procedure is adopted to generate a set of linearly independent functions, Φ{k}

lm , of
subspace S{k}

l . The final functions, Ψ{k}
l𝜇 , to be used in the Ĥ0 operator, are generated by finding the

eigenvalues and eigenvectors of the projection of Dyall’s Hamiltonian on S{k}
l Eq. (10.138).

To sum up the technical description of the NEVPT2 formalism and highlight significant differ-
ences: (i) NEVPT2 uses a two-electron Ĥ0 resulting in longer computation time and the need of
up to explicit four-particle density matrices, on the other hand, in NEVPT2 the Hamiltonian is
actually block-diagonal for each excitation class, which reduces the size of the problem, (ii) the
NEVPT2 method is strictly size extensive – CASPT2 is not, and (iii) the NEVPT2 method does
not, from a practical perspective, suffer from intruder-state problems. The latter property is due
to the fact that with the NEVPT2 partitioning of the Hamiltonian the energies of the perturbing
wave functions – the states in the first-order interacting space – are far from degenerate with the
energy of the zeroth-order state. The worst case is associated with an excited state corresponding
to a semi-internal excitation which will effectively generate an energy denominator correspond-
ing to the sum of the ionization potential of an active electron and the energy of a virtual orbital.
The former should be negative and can at worst be close to zero for a Rydberg orbital, while the
latter is positive (for neutral species) and rarely close to zero. Therefore, calculations for electronic
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Figure 10.6 Potential energy curves for the 1Σ+ states of Cr2 (ANO basis set, (12/12) CAS-CI space). Dashed
line (CASSCF) and full line (SC-NEVPT2). Reprinted with permission from ref. [19]. Copyright 2001, Elsevier.

excited states should be possible with NEVPT2 without experiencing any intruder state problem.
For a detailed discussion on this we recommend the reader to consult ref. [41].

Finally, extensive benchmarking of the NEVPT2 method does not exist at present. However, let
us again point out that different to CASPT2 the intruder state problem is effectively removed and
the result is strictly size consistent. The former is explicitly demonstrated in fig. 10.6, in which the
curve was generated without the need for any type of level-shifting technique. Preliminary bench-
mark studies by Angeli and co-workers [42] on valence and Rydberg transitions in formaldehyde
and acetone indicated errors in the range of 0.1–0.2 eV and an absence of intruder states. A recent
benchmark by Shapiro et al. [43] on vertical excitation energies of some 28 medium sized organic
molecules, does not provide decisive arguments for any discrimination between the PC-NEVPT2,
SC-NEVPT2, and SS-CASPT2 methods based on the accuracy of the predictions – if any, SS-CASPT2
has a small edge (see fig. 10.7). For example, the mean unsigned error is 0.28 eV, 0.23 eV, and 0.21 eV
for the methods as ordered above. Rather than accuracy, it will be qualities such as computer effi-
ciency and others that will, from case to case, be the determining factor in the selection of which
method to use.

10.3.6 Performance Improvements

The use of the CASPT2 and NEVPT2 methods has been very successful in predicting and
understanding a number of phenomena. However, the conventional implementations suffer from
various bottlenecks such as the transformation of the integrals to the molecular orbital basis
or the evaluation of the amplitudes. The former scales effectively as (n5) where n is the size
of the basis set, while the latter suffers from the “exponential wall” typical of a conventional
configuration-interaction treatment of the wave function. This limits the use of the methods to
modest-sized systems with active spaces of up to about 18 electron in 18 orbitals.

For moderate active spaces, the integral transformation step tends to dominate. This
integral-transformation bottleneck was effectively removed by the use of a CASPT2 imple-
mentation based on Cholesky decomposed (CD) integrals, the CD-CASPT2 approach [44]. This
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Figure 10.7 Histograms of the frequency of deviations in the singlet excitation energies in eV. Statistics of
all excitation energies are shown in gray and those below 7 eV are represented by yellow bars. Reprinted
with permission from ref. [43]. Copyright 2013, American Chemical Society.

reduced the scaling of the integral transformation by one order of magnitude while simultaneously
reducing cache faults and I/O requests. Benchmarks demonstrate that CD in combination with
CASSCF/CASPT2 reduces the computer time by a factor of four up to 1–2 orders of magnitude,
with a loss of accuracy for excitation energies of organic molecules of about 0.001 eV [45]. Another
early, but not as successful, approach is the frozen natural orbital CASPT2 (FNO-CASPT2) method
[46, 47]. In this approach, an approximation to the one-particle density matrix corrected up to
second order is diagonalized in the virtual–virtual block. Subsequently eigenvectors are eliminated
if the corresponding eigenvalue is below a predefined threshold. It has been demonstrated that
the use of this kind of reduced virtual space recovers some 95 % of the second-order correction
to the energy while significantly reducing the computational expense. Some more recent and
significant progress, however, has been made for both the CASPT2 and the NEVPT2 methods
with respect to molecular-size scaling given a fixed active space – an ability which can be of
significance in the study of transition metals with large ligands. In these approaches the effective
number of amplitudes in the first-order interacting space is dramatically reduced without any
significant loss of accuracy by a combined initial generation of projected atomic orbitals (PAO)
[48] and a subsequent generation of pair natural orbital (PNO) [49]. Both the PNO-CASPT2
[50] and the domain-based local PNOs flavor of NEVPT2 (DBLPNO-NEVPT2) [51] methods
have demonstrated, given a fixed active space, linear scaling with respect to molecular size in
combination with insignificant loss of accuracy – recovering 99.9 % of the second-order correction
to the energy. More recent developments using density matrix renormalization group (DMRG)
approximations to treat large active spaces in CASPT2 [52–56] and NEVPT2 [57–59] – the
DMRG-CASPT2 and DMRG-NEVPT2 methods – have been very successful in removing the
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conventional limitation on the size of the active space. Finally, the progress in overcoming the
bottleneck of the higher-order n-particle matrix evaluation should be mentioned [60–64]. In these
studies, the efficiency of different approaches has been explored, with mixed results, namely: (i)
approximating the cumulants of the higher-order reduced density matrices [60, 65], (ii) using a
matrix product state representation (found, for example, in DMRG) in the computation of the
first-order interacting space – called MPS-PT2 – in state-specific or quasi-degenerate (see below)
PT [61, 62, 66], (iii) using a time-dependent formulation of MRPT [63], (iv) and a projection of the
first-order interacting space in an SC-NEVPT2 setting onto a renormalized Hilbert space [64].

10.4 Quasi-Degenerate Perturbation Theory

In the course of using the SS-CASPT2 method, it was evident that the approach is only usable
when the reference functions are close to qualitatively correct, and that the first-order correction
to the wave function would be sufficient for a quantitatively correct energy only if the perturbation
expansion terminates at second order. Anything else would be wishful thinking. In the literature
there are ample cases in which the reference CASSCF wave functions are qualitatively wrong due
to the lack of dynamic electron correlation – see, for example, the case of the V -state of ethylene,
in which CASSCF introduces an artificial mixing of Rydberg and valence character, something the
SS-CASPT2 approach never recovers from [67]. The trivial solution to this problem could have been
to increase the active space or to go beyond second order in the perturbation series – which sounds
trivial but is expensive, complicated, or not even feasible. A more pragmatic approach involves for-
mulating a multi-state version of perturbation theory, something that is not straightforwardly done
from the single-state theory. What is the problem? Well, the single-state approach has the problem
that, if applied to several states at the same time, it does not allow the reference states to trivially
mix with each other as the perturbation is introduced order by order. To avoid this, multi-state
perturbation theories use an effective Hamiltonian procedure to produce corrected energies origi-
nating from corrected model states, which are linear combinations of the original reference states.
This gives rise to quasi-degenerate perturbation theory (QDPT), the basics of which we will see in
this section.

To proceed with a multi-state theory, however, some new tools have to be derived – the Bloch
equations and the wave operator (see, for example, refs. [68–70]). We start by defining a model
space – or reference space – commonly denoted P, spanned by some eigenfunctions of the Hamil-
tonian of the unperturbed system Ĥ0, the reference states,

Ψ(0)
i i = 1,… , d, (10.147)

where d is the dimension of the model space. We also define the operators

P̂ =
d∑

i=1
|Ψ(0)

i ⟩⟨Ψ(0)
i | , and (10.148)

Q̂ = 1 − P̂. (10.149)

The operator P̂ can now be used to project the exact wave function of state i onto the the model
space as

P̂Ψi = ΨP
i =

d∑
j=1

cijΨ
(0)
j , (10.150)
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where ΨP
i is the model state of state Ψi, expressed by a linear combination of the reference states in

the model space. These linear combinations are found by diagonalization of the multi-state Hamil-
tonian matrix. The wave operator, Ω̂, does the corresponding back-transformation, acting on the
model states it generates the exact states,

Ψi = Ω̂ΨP
i i = 1,… , d, (10.151)

where we note the similarities to Eq. (10.19) for the single-state case – both provide a recipe to
find the corrections of the wave function(s) to arbitrary order. For completeness, Ω̂ is defined
as a null operator when operating on the complementary space, i.e., Ω̂Q̂ = 0 and therefore
Ω̂P̂ = Ω̂(1 − Q̂) = Ω̂.

We will here derive the Bloch equation – the master equation to express the wave operator – in
which an explicit dependence on the exact energy is avoided. First, we start by left-multiplying the
“exact” Schrödinger equation with Ω̂P̂, that is,

Ω̂P̂(Ĥ0 + V)Ψi = EiΨi . (10.152)

The operator Ω̂P̂ will project any exact wave function to the reference space and then subsequently
regenerate the exact wave function. Hence, the operator will leave an exact wave function
untouched, and the RHS of the equation is identical to the original expression. Using [Ĥ0, P̂] = 0,
and with the help of Eqs. (10.150) and (10.151), the following expression is found

(Ω̂Ĥ0 + Ω̂P̂VΩ̂)ΨP
i = EiΨi , (10.153)

and by using Eq. (10.151), Ω̂P̂ = Ω̂, and the original Schrödinger equation to eliminate the energy,
one gets

(Ω̂Ĥ0 + Ω̂VΩ̂)ΨP
i = (Ĥ0Ω̂ + VΩ̂)ΨP

i , (10.154)

which holds for the model space. Since the operators on both sides are null when operating on the
complementary space, it holds for any state, and can be paraphrased into the generalized form of
the Bloch equation,

[Ω̂, Ĥ0] = VΩ̂ − Ω̂VΩ̂. (10.155)

In the single-state case the equation can be rewritten as

(E(0)
i − Ĥ0)Ω̂ = VΩ̂ − Ω̂VΩ̂. (10.156)

Expanding the wave operator in powers of the perturbation with Ω̂(0) = P̂ [68] we have

Ω̂ = P̂ + Ω̂(1) + Ω̂(2) + … , (10.157)

and finally, due to the recursive nature of the Bloch equation we have

[Ω̂(n), Ĥ0] = Q̂VΩ̂(n−1) −
n−1∑
k=1

Ω̂(n−k)VΩ̂(k−1) . (10.158)

Then we get the wave operator, up to third order, as

[Ω̂(1), Ĥ0] = Q̂VP̂ = Q̂ĤP̂, (10.159)

[Ω̂(2), Ĥ0] = Q̂VΩ̂(1) − Ω̂(1)VP̂, and (10.160)

[Ω̂(3), Ĥ0] = Q̂VΩ̂(2) − Ω̂(2)VP̂ − Ω̂(1)VΩ̂(1) . (10.161)
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In the single-state case the LHS is replaced with (E0
i − Ĥ0)Ω̂

(n)
i , where the wave operator is unique

to the state i, and the general wave operator is now expressed as

Ω̂(n) =
d∑

i=1
Ω̂(n)

i |Ψ(0)
i ⟩⟨Ψ(0)

i | . (10.162)

The effective Hamiltonian, by definition, is written as

Ĥeff = P̂ĤΩ̂P̂, (10.163)

which we note only acts on the reference space. The model states, Ψ(0)
i , i = 1,… , d, are eigenfunc-

tions of the effective Hamiltonian,

ĤeffΨ(0)
i = EiΨ

(0)
i , (10.164)

and the effective Hamiltonian up to second order is

Ĥeff[2] = P̂ĤP̂ + P̂ĤΩ̂(1)P̂. (10.165)

We note at once that the energy corrected up to first order is computed as

E[1]
i = ⟨Ψ(0)

i |Ĥ0 + V |Ψ(0)
i ⟩ , (10.166)

and the second-order correction to the energy is expressed as

E(2)
i = ⟨Ψ(0)

i |Ĥ|Ψ(1)
i ⟩ . (10.167)

Let us look at the first-order corrected wave function in terms of a single- and multi-state for-
malism. The first-order correction to the wave function in a single-state formalism is expressed
as

Ψ(1)
i = Ω̂(1)

i Ψ(0)
i =

∞∑
j=1
j≠i

CijΨ
(0)
j , (10.168)

while in a multi-state approach we have (see Eqs. 10.150 and 10.162)

Ψ(1),P
i = Ω̂(1)ΨP

i (10.169)

=
d∑

j=1
Ω̂(1)

j |Ψ(0)
j ⟩⟨Ψ(0)

j |ΨP
i ⟩

=
d∑

j=1
cji

∞∑
k=1
k≠j

CjkΨ
(0)
k

=
d∑

j=1
cjiΨ

(1)
j . (10.170)

Note that this does not imply that the first-order corrected model states are orthogonal, they will
only be so at infinite order. The coefficients, Cjk, are computed from the general Bloch equation
according to∑

j≠i
Cij⟨Ψ(0)

k |(E(0)
i − Ĥ0)|Ψ(0)

j ⟩ = ⟨Ψ(0)
k |Ĥ|Ψ(0)

i ⟩ , (10.171)

which simplifies to

Cik =
⟨Ψ(0)

k |V |Ψ(0)
i ⟩

E(0)
i − E(0)

k

, (10.172)
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and now allows the computation of the second-order energy as described above. The matrix ele-
ments of the effective Hamiltonian are now expressed as

⟨Ψ(0)
i |Ĥeff[2]|Ψ(0)

i ⟩ = E[2]
i (10.173)

and

⟨Ψ(0)
i |Ĥeff[2]|Ψ(0)

j ⟩ = ⟨Ψ(0)
i |Ĥ|Ψ(0)

j + Ψ(1)
j ⟩ . (10.174)

Given these matrix elements we can now proceed with a diagonalization and derive the model
states of the model space. To conclude, this approach can be viewed as perturb-then-diagonalize,
in which we use perturbation theory to set up the effective Hamiltonian which is subsequently
diagonalized.

10.5 Multi-State Multi-Configurational Reference Perturbation
Methods

In the pursuit of practical methods to overcome single-state MRPT limitations, the tools of
quasi-degenerate perturbation theory come in handy. Defining a relevant model space of several
states provides a pathway in which (i) the computational effort only increases linearly with the
number of states in the model space and (ii) artificial redundancies (due to deficiencies on the
CASSCF treatment) are removed, in one single step, under the influence of the perturbation
(that is, including electron–electron correlation). These methods will now be of the nature
diagonalize-then-perturb-then-diagonalize approach, in the sense that we will use basis functions
in the setup of the effective Hamiltonian which are based on a diagonalize-then-perturb technique.
Specifically, below we will describe two such methods in some detail – the multi-state and the
extended multi-state CASPT2 (MS-CASPT2 and XMS-CASPT2). Similar approaches have suc-
cessfully been applied to both the MRMP2 (multi-configurational quasi-degenerate second-order
perturbation theory, MCQDPT2) [71, 72] and NEVPT2 single-state theories (QD-NEVPT2) [73].

10.5.1 Multi-State CASPT2 Theory

As described above, QDPT requires that Ĥ0 and Ĥeff[2]
i be unique for all the reference states.

However, much of the success of SS-CASPT2 lies in the use of an Ĥ0 that is specifically tai-
lored to the state under study. In 1998 Finley and co-workers suggested a hybrid approach
of SS-CASPT2 with quasi-degenerate perturbation theory [74] – the multi-state CASPT2
(MS-CASPT2) method – to improve the SS-CASPT2 method in those cases where the reference
CASSCF wave function does not meet the qualitative requirements for a fast convergence of
the perturbation expansion, additionally it should remove erroneous behavior of SS-CASPT2 at
points of degeneracy. This approach is very similar to what was described above for standard
quasi-degenerate perturbation theory, that is a perturb-then-diagonalize approach. However,
in this case the starting reference functions have already been the subject of a diagonaliza-
tion procedure – the CASSCF procedure – and in this aspect the MS-CASPT2 procedure is a
diagonalize-then-perturb-then-diagonalize-like procedure. The suggestion of Finley et al. revolves
entirely around Eqs. (10.173) and (10.174). How are those equations to be used in association
with the SS-CASPT2 approach? In this respect the authors suggest the following. First, and maybe
trivial, the diagonal elements in the effective Hamiltonian are simply the individual SS-CASPT2
energies,

⟨Ψ(0)
i |ĤMS-CASPT2|Ψ(0)

i ⟩ = ESS-CASPT2
i = ⟨Ψ(0)

i |Ĥeff[2]
i |Ψ(0)

i ⟩ . (10.175)
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At this point we also recognize the significant difference to Eq. (10.173): the effective Hamiltonian
operator and the corresponding implicit partitioning of the Hamiltonian is state-specific [75]. This
raises a problem when we proceed to the computation of the off-diagonal elements of the effective
Hamiltonian matrix, that is,

⟨Ψ(0)
i |Ĥeff[2]

j |Ψ(0)
j ⟩ = ⟨Ψ(0)

i |Ĥ|Ψ(1)
j ⟩ ≠ ⟨Ψ(0)

j |Ĥ|Ψ(1)
i ⟩ = ⟨Ψ(0)

j |Ĥeff[2]
i |Ψ(0)

i ⟩ , (10.176)

which for obvious reason produces a non-symmetric Hamiltonian matrix. In the current imple-
mentation this problem is fixed with a simple symmetrization of the matrix with the limitation
that results should be questioned if corresponding off-diagonal elements are large and different.
The MS-CASPT2 results are generally in line with SS-CASPT2 results. In the original report
by Finley and co-workers, the authors demonstrated explicitly how the MS-CASPT2 approach
solves the problem with the artificial valence–Rydberg mixing in the V -state of ethane, and
how MS-CASPT2, unlike SS-CASPT2, provides qualitatively correct results around the avoided
crossing of the ionic–neutral states in the dissociation of LiF (see fig. 10.8). When MS-CASPT2
and SS-CASPT2 results differ, however, the prudent user will have to address the issue of whether
or not the MS-CASPT2 results should be trusted. In particular, it has been demonstrated that the
MS-CASPT2 method resolves cases with accidental degeneracy at the CASSCF level if it does not
persist at the SS-CASPT2 level. On the other hand, the MS-CASPT2 is known to provide erroneous
behavior around conical intersections [76, 77] and other cases of near-degeneracy. The latter
problem is known to be a consequence of the use of state-specific effective operators, a procedure
will be suggested below to remove these problems.

10.5.2 Extended MS-CASPT2 Theory

Granovsky analysed MCQDPT theory and put forward qualitative criteria which a quasi-degenerate
perturbation theory should satisfy [77]. One of these is that the eigenvalues of the effective Hamil-
tonian should be invariant to the particular basis functions selected to span the model space, as long
as they span the same subspace. In this respect Granovsky suggested that the Ĥ0 operator should
be extended from

Ĥ0 =
∑

i
|Ψ(0)

i ⟩⟨Ψ(0)
i |F̂|Ψ(0)

i ⟩⟨Ψ(0)
i | (10.177)

to

Ĥ0 =
∑

ij
|Ψ(0)

i ⟩⟨Ψ(0)
i |F̂|Ψ(0)

j ⟩⟨Ψ(0)
j | , (10.178)

where F̂ is a Fock-like operator, as in CASPT2. Thus, the Ĥ0 operator is explicitly independent
of the selection of the basis functions spanning a particular model space. This new technique
is denoted as extended MCQDPT (XMCQDPT). This extension has been applied to MS-CASPT2
theory yielding the method known as XMS-CASPT2 [78]. In this approach the Ĥ0 matrix is diag-
onalized. The “non-extended” procedure is then continued in the basis of these eigenfunctions
ΨX(0)

i .
It should be noted that the XMS-CASPT2 approach requires the use of a state-specific parti-

tioning to be abandoned, as used in the MS-CASPT2 method. The state-specific approach and
the MS-CASPT2 method have been successful in predicting vertical excitation energies. The
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Figure 10.8 Potential energy curves for the two lowest 1Σ+ states of LiF in the region of their
neutral–ionic avoided crossing. The dotted lines represent the SS-CASPT2 calculations and the solid lines
represent the MS-CASPT2 calculations. The points indicate the FCI calculations. Reprinted with permission
from ref. [74]. Copyright 1998, Elsevier.

XMS-CASPT2 method certainly will resolve some of the flaws of the MS-CASPT2 theory in and
close to conical intersections (see fig. 10.9). However, this will be at the expense of accuracy of
predicting vertical excitation energies for well-separated states. Furthermore, in the XMS-CASPT2
method the eigenvalues of the model space are sometimes too sensitive to changes of the model
space by including more or fewer states.

10.6 Summary and Outlook

In this chapter we have described the CASPT2, MS-CASPT2, and XMS-CASPT2 methods in some
detail. We have also lightly touched on some related methods such as the CAS-MP2, MRMP2, and
NEVPT2 approximations. This has been presented in a bottom-up order, starting with a thorough
presentation of Rayleigh–Schrödinger perturbation theory. Here we also discussed the issue of the
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Figure 10.9 Potential energy curves (PECs) of the LiF molecule near the avoided crossing area computed
using different MS-MRPT approaches. MRSDCI PECs are given as reference. PECs were intentionally left
non-shifted to a common dissociation limit. Reprinted with permission from ref. [77]. Copyright 2011,
American Institute of Physics.

convergence of the perturbation expansion and how divergence or near-divergence is manifested
as the presence of intruder states. In the analysis of these we introduced the gap-shift technique.
This tool later became a general technique to avoid divergence – real and imaginary shift tech-
niques – or a way to compensate for systematic errors – the IPEA shift. This was followed up by a
detailed presentation of the Møller–Plesset partitioning in association with the single determinant
SCF wave function – the CASPT2 model is supposed to reduce to this as the active space is reduced
to null. Here we also discussed numerical methods to compute the first-order correction to the wave
function and subsequently the second-order correction to the energy, when analytical solutions
do not exist. At this point the single-state multi-configurational perturbation schemes were intro-
duced (CAS-MP2, CASPT2, MRMP2, and NEVPT2). The chapter discussed the benchmark results
of these methods, which clearly exhibit explicit or implicit properties of the single-state approaches.
These second-order perturbation approaches have their limitations and multi-state versions of per-
turbation theory have, sometimes, to be used to relieve these shortcomings. For that purpose we
presented, in some detail, the basic steps of quasi-degenerate perturbation theory – this allowed us
to pave the way for an understanding of the multi-state versions of perturbation theories mentioned
above. Prepared by this introduction, we proceeded with a description of the multi-state version of
CASPT2, which has some parallels with the corresponding MRMP2 and NEVPT2 versions. Finally,
an extended version of MS-CASPT2 was introduced – based on extended quasi-degenerate pertur-
bation theory – which will have an Ĥ0 operator whose eigenvalues are invariant to rotations of the
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states in the model space. This, in particular, should resolve some problems of MS-CASPT2 with
artificial surface crossings observed close to or at conical intersections.

The future of MRPT, its implementation and approximations, is closely connected with the
partitioning of the Hamiltonian for the CASPT2 method. Here there is still room for significant
improvement. While the NEVPT2 model does not suffer from the intruder-state problem to the
degree that CASPT2 does, it derives this character at a larger computational cost. For the NEVPT2
approach to become tractable for larger active spaces, approximations will have to be developed to
reduce this disadvantage compared to the CASPT2 method. Additionally, with the advent of the
DMRG approach to enable CASSCF calculations with large active spaces, both the CASPT2 and
the NEVPT2 methods have to be recast to overcome the issues that computing and storing the
whole (or partially contracted) four-particle density matrix – at least if the notion of contracted
reference functions is to survive. For recent developments in MRPT, we point the reader to the
references mentioned at the end of section 10.3.6. Finally, the issue of how to select the reference
functions needs to be readdressed. Is there maybe a golden path to be explored in which the
reference function already – through some simple approach – carries a significant part of the
dynamic electron correlation?
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Appendix

The following is an almost verbatim copy of appendix A in K. Andersson’s thesis [79], reproduced
here with her kind permission. Some adaptation has been applied in order to maintain consistency
with the notation used in the rest of this chapter. Where different this will be pointed out.

This appendix is a collection of all matrix elements and vector components used in the first-order
equation (see for example eqs. 10.24 and 10.108). We note that the orbital basis used in the appendix
is the one in which the diagonal blocks of the Fock matrix (inactive, active and virtual), have been
diagonalized. To emphasize this the Fock matrix elements are denoted f ′ so that there is a distinc-
tion with respect to a Fock matrix in a general orbital representation, f .

The following additional definitions and notations have been used (note that the two-particle
density-matrix elements, Γpqrs, carry a factor 1

2
in the work of Andersson, while here we stand by

the definition in Chapter 1, section 1.6):

êut = 2𝛿ut − Êut ,

dut = ⟨Ψ(0)|êut|Ψ(0)⟩ , and

𝛾utx𝑣 = ⟨Ψ(0)|êutêx𝑣 − 𝛿u𝑣êxt|Ψ(0)⟩ .
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The index notation specified in Chapter 1, section 1.5, will be used strictly in this appendix except
in the following formula:

f I
pq = hpq +

∑
k
[2(pq|kk) − (pk|kq)] ,

where k runs over both the frozen and inactive subspaces, i.e., over all doubly-occupied orbitals.
In the evaluation of the matrix elements and vector components the following commutation

relations have been useful:

[Êpq, Êrs] = 𝛿rqÊps − 𝛿psÊrq ,

[êpq, êrs] = 𝛿psêrq − 𝛿rqêps .

Matrix elements and vector components, with respect to combinations stemming from interac-
tions between states of the same class within the first-order interacting space, will be presented
in the following section. Corresponding matrix elements between states of different classes of the
first-order interacting space will be presented subsequently. We note also that we will use the fol-
lowing abbreviation: |Ψ(0)⟩ = |0⟩ and similarly for the bra.

The Diagonal Blocks
The following elements are given in this section:

⟨𝜎|Ĥ0 − E(0)|𝜏⟩ , ⟨𝜎|V |0⟩ , |𝜎⟩, |𝜏⟩ ∈ VX ,

where Ĥ0 =
∑

pqf ′pqÊpq and X ∈ {A,… ,H}. We note that, f ′pq = 𝛿pq𝜖p, if both indices, p and q,
belong to the same orbital class, i.e., inactive, active, and virtual. Non-zero elements are found in
the four inactive–active and active–virtual blocks.

Internal excitations: X ∈ {A,B}

A B i ≥ j, k ≥ l, t ≥ u, x ≥ y|itu𝑣⟩ = ÊtiÊu𝑣|0⟩ |ijtu⟩± = [ÊtjÊui ± ÊtiÊuj]|0⟩⟨itu𝑣|Ĥ0 − E(0)|kxyz⟩ ±⟨ijtu|Ĥ0 − E(0)|klxy⟩±
= 𝛿ik[𝛼iSA

tu𝑣,xyz + Btu𝑣,xyz] = 𝛿ik𝛿jl[1 ± 𝛿ij][𝛼ijS±
tu,xy + B±

tu,xy]⟨itu𝑣|V |0⟩ = V i
tu𝑣

±⟨ijtu|V |0⟩ = 1
2
[1 ± 𝛿ij](S

±W ij,±)tu

𝛼i = −𝜖i −
∑

𝑤𝜖𝑤D𝑤𝑤 𝛼ij = −𝜖i − 𝜖j +
∑

𝑤𝜖𝑤d𝑤𝑤
SA

tu𝑣,xyz = ⟨0|Ê𝑣uêxtÊyz|0⟩ S±
tu,xy = Stu,xy ± Stu,yx , Stu,xy = 2𝛾xtyu

Btu𝑣,xyz = 𝜖x⟨0|Ê𝑣uêxtÊyz|0⟩ B±
tu,xy = Btu,xy ± Btu,yx

+
∑

𝑤𝜖𝑤⟨0|Ê𝑣uêxtÊ𝑤𝑤Êyz|0⟩ Btu,xy = [𝜖t + 𝜖y][2𝛾xtyu + 𝛿tydxu]
V i

tu𝑣 = 2f I
tiD𝑣u − f I

uiD𝑣t −
∑

𝑤Γ𝑣u𝑤tf I
𝑤i +2

∑
𝑤𝜖𝑤[𝛿ty𝛾xu𝑤𝑤 − ⟨0|êyuê𝑤𝑤êxt|0⟩]

+
∑

𝑤xy⟨0|Ê𝑣uê𝑤tÊxy|0⟩(𝑤i|xy) W ij,±
tu = 1

1+𝛿ij

[
1 − 1

2
𝛿tu

]
[(ti|uj) ± (ui|tj)]
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Semi-internal excitations: X ∈ {C,D, E}

C D|atu𝑣⟩ = ÊatÊu𝑣|0⟩⟨atu𝑣|Ĥ0 − E(0)|cxyz⟩
= 𝛿ac[𝛼aSC

tu𝑣,xyz + Btu𝑣,xyz]⟨atu𝑣|V |0⟩ = V a
tu𝑣

𝛼a = 𝜖a −
∑

𝑤𝜖𝑤D𝑤𝑤

SC
tu𝑣,xyz = ⟨0|Ê𝑣uÊtxÊyz|0⟩

Btu𝑣,xyz = −𝜖x⟨0|Ê𝑣uÊtxÊyz|0⟩
+
∑

𝑤𝜖𝑤⟨0|Ê𝑣uÊtxÊ𝑤𝑤Êyz|0⟩
V a

tu𝑣 =
∑

𝑤xy⟨0|Ê𝑣uÊt𝑤Êxy|0⟩(a𝑤|xy)

+
∑

𝑤[Γ𝑣ut𝑤 + 𝛿utD𝑣𝑤]
[
f I
a𝑤 −

∑
y(ay|y𝑤)]

E i ≥ j, k ≥ l|ijat⟩± = [ÊtjÊai ± ÊtiÊaj]|0⟩
±⟨ijat|Ĥ0 − E(0)|klcx⟩±

= 2[2 ∓ 1]𝛿ac𝛿ik𝛿jl[1 ± 𝛿ij][𝛼ijaStx + Btx]
±⟨ijat|V |0⟩ = [2 ∓ 1][1 ± 𝛿ij](SW ija,±)t

𝛼ija = 𝜖a − 𝜖i − 𝜖j +
∑

𝑤𝜖𝑤d𝑤𝑤
Stx = dxt

Btx = −
∑

𝑤𝜖𝑤𝛾𝑤𝑤xt

W ija,±
t = 1

1+𝛿ij
[(ai|tj) ± (aj|ti)]

|iatu⟩1 = ÊaiÊtu|0⟩, |iatu⟩2 = ÊtiÊau|0⟩
Q⟨iatu|Ĥ0 − E(0)|kcxy⟩P

= 𝛿ac𝛿ik[𝛼iaSQ,P
tu,xy + BQ,P

tu,xy]
Q⟨iatu|V |0⟩ = V ia,Q

tu P,Q ∈ {1, 2}
𝛼ia = 𝜖a − 𝜖i −

∑
𝑤𝜖𝑤D𝑤𝑤

S =

[
S1,1 S1,2

S2,1 S2,2

]
, B =

[
B1,1 B1,2

B2,1 B2,2

]
S1,1

tu,xy = −2S2,1
tu,xy = 2[Γutxy + 𝛿txDuy]

S2,2
tu,xy = −[Γxtuy − 2𝛿txDuy]

B1,1
tu,xy = −2B2,1

tu,xy

= 2
∑

𝑤𝜖𝑤⟨0|ÊutÊ𝑤𝑤Êxy|0⟩
B2,2

tu,xy = [𝜖u − 𝜖x]Γxtuy + 𝜖u𝛿tuDxy

+2𝜖x𝛿txDuy +
∑

𝑤𝜖𝑤[2𝛿txΓ𝑤𝑤uy

+𝛿tuΓ𝑤𝑤xy − ⟨0|ÊxtÊ𝑤𝑤Êuy|0⟩]
V ia = f I

aiU + SW ia

V ia =

[
V ia,1

V ia,2

]
, U =

[
U1

U2

]
, W ia =

[
W ia,1

W ia,2

]
U1

tu = 2Dut, U2
tu = −Dut

W ia,1
tu = (ai|tu), W ia,2

tu = (ti|au)

External excitations: X ∈ {F,G,H}

F a ≥ b, c ≥ d, t ≥ u, x ≥ y G a ≥ b, c ≥ d|abtu⟩± = [ÊbtÊau ± ÊatÊbu]|0⟩ |iabt⟩± = [ÊbiÊat ± ÊaiÊbt]|0⟩
±⟨abtu|Ĥ0 − E(0)|cdxy⟩± ±⟨iabt|Ĥ0 − E(0)|kcdx⟩±

= 𝛿ac𝛿bd[1 ± 𝛿ab][𝛼abS±
tu,xy + B±

tu,xy] = 2[2 ∓ 1]𝛿ik𝛿ac𝛿bd[1 ± 𝛿ab][𝛼iabStx + Btx]
±⟨abtu|V |0⟩ = 1

2
[1 ± 𝛿ab](S

±W ab,±)tu
±⟨iabt|V |0⟩ = [2 ∓ 1][1 ± 𝛿ab](SW iab,±)t

𝛼ab = 𝜖a + 𝜖b −
∑

𝑤𝜖𝑤D𝑤𝑤 𝛼iab = 𝜖a + 𝜖b − 𝜖i −
∑

𝑤𝜖𝑤D𝑤𝑤

S±
tu,xy = Stu,xy ± Stu,yx , Stu,xy = 2Γtxuy Stx = Dtx

B±
tu,xy = Btu,xy ± Btu,yx Btx =

∑
𝑤𝜖𝑤Γ𝑤𝑤tx

Btu,xy = −[𝜖t + 𝜖y][2Γtxuy + 𝛿tyDux] W iab,±
t = 1

1+𝛿ab
[(at|bi) ± (bt|ai)]

−2
∑

𝑤𝜖𝑤[𝛿tyΓux𝑤𝑤 − ⟨0|ÊuyÊ𝑤𝑤Êtx|0⟩]
W ab,±

tu = 1
1+𝛿ab

[
1 − 1

2
𝛿tu

]
[(au|bt) ± (at|bu)]

H i ≥ j, k ≥ l, a ≥ b, c ≥ d

|ijab⟩± = [ÊbjÊai ± ÊajÊbi]|0⟩
±⟨ijab|Ĥ0 − E(0)|klcd⟩± = 4[2 ∓ 1]𝛿ik𝛿jl𝛿ac𝛿bd[1 ± 𝛿ij][1 ± 𝛿ab][𝜖a + 𝜖b − 𝜖i − 𝜖j]

±⟨ijab|V |0⟩ = 2[2 ∓ 1][(ai|bj) ± (aj|bi)]
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Appendix 353

The Nondiagonal Blocks
The following elements are given in this section:

⟨𝜎|Ĥ0|𝜏⟩ , |𝜎⟩ ∈ VX , |𝜏⟩ ∈ VY , X ≠ Y ∈ {A,… ,H} .

AB k ≥ l, x ≥ y

⟨itu𝑣|Ĥ0|klxy⟩± =
∑

𝑤[𝛿ilf ′𝑤k ± 𝛿ikf ′
𝑤l]{−[S

A
tu𝑣,xy𝑤 ± SA

tu𝑣,yx𝑤]

+[2 ∓ 1][𝛿y𝑤(2𝛿xtD𝑣u − 𝛿uxD𝑣t − Γ𝑣uxt) ± 𝛿x𝑤(2𝛿ytD𝑣u − 𝛿uyD𝑣t − Γ𝑣uyt)]}

CF c ≥ d, x ≥ y

⟨atu𝑣|Ĥ0|cdxy⟩± =
∑

𝑤[𝛿adf ′𝑤c ± 𝛿acf ′
𝑤d]

×{[SC
tu𝑣,x𝑤y − 𝛿𝑤x(Γ𝑣uty + 𝛿utD𝑣y)] ± [SC

tu𝑣,y𝑤x − 𝛿𝑤y(Γ𝑣utx − 𝛿utD𝑣x)]}

AD CD⟨itu𝑣|Ĥ0|kcxy⟩1 = 𝛿ik
∑

𝑤f ′𝑤cSA
tu𝑣,𝑤xy ⟨atu𝑣|Ĥ0|kcxy⟩1 = −𝛿ac

∑
𝑤f ′
𝑤kSC

tu𝑣,𝑤xy⟨itu𝑣|Ĥ0|kcxy⟩2 = 𝛿ik
∑

𝑤f ′𝑤cSA
tu𝑣,x𝑤y ⟨atu𝑣|Ĥ0|kcxy⟩2 = −𝛿ac

∑
𝑤f ′
𝑤k[S

C
tu𝑣,yx𝑤

−2𝛿𝑤x(Γ𝑣uty + 𝛿utD𝑣y) − 𝛿xy(Γ𝑣ut𝑤 + 𝛿utD𝑣𝑤)]

BE i ≥ j, k ≥ l, t ≥ u

±⟨ijtu|Ĥ0|klcx⟩± = 2𝛿ik𝛿jl[1 ± 𝛿ij]
∑

𝑤f ′𝑤c[𝛾xt𝑤u ± 𝛾xu𝑤t]

DE k ≥ l

1⟨iatu|Ĥ0|klcx⟩± = −[2 ∓ 1]𝛿ac
∑

𝑤[𝛿ikf ′
𝑤l ± 𝛿ilf ′𝑤k][Γutx𝑤 + 𝛿txDu𝑤 − 2𝛿x𝑤Dut]

2⟨iatu|Ĥ0|klcx⟩± = 𝛿ac
∑

𝑤[𝛿ilf ′𝑤k ± 𝛿ikf ′
𝑤l]

×{[Γu𝑤xt + 𝛿x𝑤Dut − 2𝛿txDu𝑤] ± [Γutx𝑤 + 𝛿txDu𝑤 − 2𝛿x𝑤Dut]}

FG a ≥ b, c ≥ d, t ≥ u

±⟨abtu|Ĥ0|kcdx⟩± = −2𝛿ac𝛿bd[1 ± 𝛿ab]
∑

𝑤f ′
𝑤k[Γuxt𝑤 ± Γu𝑤tx]

DG c ≥ d

1⟨iatu|Ĥ0|kcdx⟩± = [2 ∓ 1]𝛿ik
∑

𝑤[𝛿adf ′
𝑤c ± 𝛿acf ′

𝑤d][Γut𝑤x + 𝛿t𝑤Dux]

2⟨iatu|Ĥ0|kcdx⟩± = 𝛿ik
∑

𝑤[𝛿adf ′
𝑤c ± 𝛿acf ′

𝑤d]{[−Γut𝑤x − 𝛿t𝑤Dux] ± [−Γux𝑤t + 2𝛿t𝑤Dux]}

EH i ≥ j, k ≥ l, c ≥ d

±⟨ijat|Ĥ0|klcd⟩± = 2[2 ∓ 1]𝛿ik𝛿jl[1 ± 𝛿ij]
∑

𝑤[𝛿acf ′
𝑤d ± 𝛿adf ′

𝑤c]d𝑤t

GH a ≥ b, k ≥ l, c ≥ d

±⟨iabt|Ĥ0|klcd⟩± = −2[2 ∓ 1]𝛿ac𝛿bd[1 ± 𝛿ab]
∑

𝑤[𝛿ilf ′𝑤k ± 𝛿ikf ′
𝑤l]Dt𝑤

The remaining upper-triangular blocks are equal to zero and the lower-triangular blocks are
given by symmetry, since Ĥ0 is a Hermitian operator.


