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Abstract
Molecular structure optimization is one of the most common tasks performed in computational chemistry.
Many applications require locating special points in a potential energy surface: minima, saddle points, and
others. Given that the calculation of energies and gradients with accurate quantum chemical methods is quite
computationally demanding, one is often interested in finding these special points with a minimal number of
energy evaluations. During the last decades, optimization methods and strategies based on a second-order
expansion of the potential energy surface have been developed and perfectioned, reaching a high level of ef-
ficiency and robustness. These “conventional” methods are briefly described in this chapter. More recently,
alternative models and methods applying machine learning techniques (and most significantly Gaussian pro-
cess regression) are being proposed and developed, and already show superior characteristics with respect to
the established methods. These new approaches are discussed, in particular the restricted variance optimiza-
tion method is described in some detail. Practical examples include optimization of stable structures and tran-
sition states.

Keywords: Geometry optimization, Gaussian process regression, Constrained optimization, Transition state,
Potential energy surface, Surrogate model

Introduction

The Born-Oppenheimer approximation is a fundamental concept in computational chem-
istry. On the one hand, it introduces a semiseparation of coordinates—electronic and nuclear
coordinates—facilitating efficiency in solving the Schr€odinger equation as two separate prob-
lems, on the other hand, it introduces the notion of the potential energy surface (PES). The
latter forms the pedestal of theway inwhich chemists think about chemical reactivity—amol-
ecule’s properties and reactivity are closely associated with the molecular structure and the
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corresponding local topology of the PES. This is true for both ground-state and excited-state
chemistry. In that sense it is instrumental, to theoretical simulations of equilibrium and reac-
tion properties—either thermally or photo-activated—to possess computational tools for an
efficient exploration of PES. Since the development of analytical gradients in computational
chemistry, an ongoing parallel development of methods to locate equilibrium and transition
state structures, or to explore particular parts of the PES through constrained optimizations,
as in reaction paths, has been in progress. These developments have almost uniquely been
restricted to second-order methods utilizing approximate Hessians—a type of quasi-Newton
approach. In that respect researchers have tried to optimize the selection of coordinates, ex-
plored different types of second-order optimization methods, proposed various measures to
produce accurate approximate Hessians, or to design Hessian update methods appropriate
for various types of explorations of the PES. It should, however, be noted that these methods
are nowadays very mature and significant new developments are not frequently reported.
That is, until recently, machine learning (ML) techniques started to be used as an alternative
to the traditional second-order methods as a surrogate model. The ML methods have several
features which will trump any second-order method, for example, they can include several
stationary points at the same time, the methods do not require any Hessian-update proce-
dure, the surrogate model will converge to the parent model as the number of iterations in-
creases, it will include anharmonic characteristics, and it will provide analytic estimates of the
expected discrepancy between the parent and surrogate model at any point in the geometry
space of any given molecule, as well as directly model numerical noise in the input data via
hyperparameters. ML optimizations, however, are in their infancy and have several issues
that need to be ironed out, for example, the selection of coordinates, the optimization of
the associated hyperparameters of the ML procedure, and the use of the dispersion estimate,
to mention a few. Having said that it is fair to say that recent developments nowadays de-
scribe robust and stable ML techniques performing in parity with or most often superior
to conventional optimization methods.

Hence, we believe that the field is mature enough to deserve a subsummary of the ongoing
activities and present it in such a way that the matter will be exposed to more researchers and
students in the field of computational chemistry. Considering that the ML methods have just
recently been incorporated to the arsenal of tools used by theoretical chemistry, we hope that
a review like this will also inspire other researchers to explore the potentials of ML in other
aspects of computer simulations of the chemical reactivity. Thus, in this chapter, we present a
general review of the state of the art of the field and describe new recent developments. To-
ward the end of the review we give some detailed case studies employing the so-called re-
stricted variance optimization (RVO) approach in order to demonstrate the flexibility and
power of the integration of ML technique in as mundane tasks as molecular structure opti-
mizations and PES explorations.

Methods

This section is subdivided into three parts. The first part is to set the stage for a comparison
between established methods and ML-inspired approaches. That is, it will describe standard
methods for molecular structure optimizations as gradually developed over the last 50 years.
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This will also introduce some concepts which are of essence in the development of
ML-supported procedures. The presentation will be a brief yet sufficiently detailed review
of conventional techniques, which are used in association with optimizations of equilibrium
and transition state structures, reaction paths, and combined with geometrical constraints.
For a perhapsmore verbose and complete presentation of the subject we direct the eager reader
to the excellent review by Schlegel [1]. In the second part, we discuss pure MLmethods which
will directly produce molecular structures, without any reference to a parent model running in
parallel to support the surrogate model with data. Finally, in the third section, we review the
current developments of the incorporation of ML methods in molecular geometry optimiza-
tions. This section will be ended by a more detailed description of the implementation of a
Gaussian process regression (GPR) method in terms of RVO [2, 3]. As the presentation moves
along, we will contrast the performance details of the various methods against each other.

Established methods for molecular optimizations

Given a PES, we have a more or less complicated function which yields an energy as a
function of molecular structure—the parent model. The standardmolecular structure optimi-
zationmethods, designed by computational chemists, have been developed in the light of the
fact that in conventional ab initio calculations energy and gradient calculations are of
comparable computational expense while higher derivatives are out of reach for frequent
evaluation and use in iterative procedures. In that respect, the optimization paradigms imple-
mented are, by and large, those that use the analytic values of the energy and gradient of the
parent model. This would, however, imply strict first-order optimization methods. Here,
though, the general convergence rate is rather poor. Higher-order methods would make
much more sense in improved performance and general robustness of the procedure. How-
ever, the application of analytic Hessian (second derivatives) is, in general, out of the ques-
tion. Hence the compromise: computational chemists have generally based their optimization
methods on procedures on analytic values of the energies and gradients, and approximative
estimates of higher derivatives. In particular, the use of second-order surrogate models in
connection with Hessian update methods—the quasi-Newton method [4, 5]—is today the
established optimization strategy. In this context we will touch on some of the standards that
have been developed over the years in the next section. Especially, we will discuss various
versions of the quasi-Newton procedure, step restrictions, the selection of coordinates, pro-
cedures to generate the estimates of theHessian, Hessian-updatemethods, and techniques for
constrained optimizations. At the very end of this section, we will also briefly discuss the
geometry optimization using direct inversion in the iterative subspace (GDIIS) technique.

Quasi-Newton methods

As mentioned earlier, molecular geometry optimizations employ a surrogate model based
on a second-order expansion—a quadraticmodel, traditionally in the form of a truncated Tay-
lor expansion

EðqÞ ¼ Eðq0Þ+gðq0ÞtΔq +
1

2
ΔqtHðq0ÞΔq (1)
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where q denotes an arbitrary molecular structure expressed in some coordinates, g(q0) and
H(q0) are the first derivative (in the form of a column vector) and the approximative second
derivative (in the form of a matrix), respectively, with respect to the coordinates of the
molecular structure evaluated at an arbitrary reference structure, q0, and Δq ¼ q � q0. This
surrogate model is a pragmatic choice which will, more or less, coerce optimizations to con-
vergence. The model is accurate close to the point of expansion; however, it has a number of
limitations as follows: (i) it cannot describe anharmonic characteristics of the PES, (ii) it cannot
describe several stationary points simultaneously, (iii) it will not converge toward the parent
model as the number of data points (iterations) increases, and (iv) it will not give an analytic
estimate of the range within which the model is accurate given an acceptable allowed error.

The Taylor-like quadratic surrogatemodel has been usedwith some success over the years;
however, an alternative quadratic approach, the rational function and rational function op-
timization (RFO) [6], has demonstrated superior performance. Here the surrogate model is a
rational function with quadratic polynomials as numerator and denominator,

EðqÞ ¼ Eðq0Þ+
1

2

1 Δ qtð Þ 1 gt

g H

� �
1

Δq

� �

1 Δ qtð Þ 1 0t

0 S

� �
1

Δq

� � (2)

where the symmetric matrix S is usually set to the unit matrix I. Note that the matrix product
on the numerator, together with the 1

2 factor, is nothing more than a rewrite of the second and
third terms of Eq. (1), and that the denominator becomes (1 + jΔqj2) when S¼ I. The success of
the method is attributed to the denominator that brings in a semianharmonic characteristic in
the model—the potential does not increase indefinitely as a pure harmonic potential, but is
tapered to a finite value.

Both of these surrogate models have been implemented not only for standard equilibrium
optimizations but also for optimizations of transition states (TS) and constrained optimiza-
tions. In the case of transition state optimizations two modifications have been presented,
the decoupled optimization and the coupled optimization. In the decoupled optimization
the combined minimization in 3N � 7(6) directions (N being the number of atoms) is
decoupled from the maximization in the direction of the reaction coordinate, partitioned ra-
tional function optimization (P-RFO) [7]. An alternative is to use the so-called image function
technique of Smith [8], which changes the sign of the components of the gradient andHessian
in the direction of the reaction coordinate. This was first used by Helgaker [9] in combination
with RFO, denoted as image rational function optimization (I-RFO) and demonstrated that a
coupled approach, which is strictly aminimization in all degrees of freedom, is a very efficient
method for determining the location of TS. The current status of TS optimizations is that per-
formance is closely connected to the qualitative accuracy of the Hessian—Is the separation of
the reaction coordinate and the complementary coordinate space accurate enough?

Step restriction

The very fact that the quadratic surrogate model is an approximation, for which the dis-
agreement with the parent model presumably increases with the distance to the reference
structure of the molecule, means that some care has to be taken in order to avoid a large step
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which most likely corresponds to a molecular structure for which the surrogate model pro-
duces poor predictions of the energy. In this respect, a safety measure has been introduced—
the step restriction procedure. This approach simply says that predicted corrections of a
molecular structure should have a length, l(q) (usually evaluated in terms of the Cartesian
coordinates), that is not longer than a given threshold value, τ. Older implementations of this
strategy simply scaled the suggested step such that the length of the step is not longer than the
length threshold. However, a more prudent approach is that, in the case the predicted step is
too long, a constrained optimization is conducted such that an optimal structure with a step
length of precisely τ is obtained [10]. This has been implemented for both standard second-
order Newton-Raphson (NRO) and rational function optimizations, giving rise to restricted-
step versions of both methods—RS-NRO and RS-RFO [11, 12]. While in the former case the
step restriction is implemented as a constrained optimization with Lagrange multipliers,

LðqÞ ¼ Eðq0Þ+gðq0ÞtΔq +
1

2
ΔqtHðq0ÞΔq + λðlðqÞ � τÞ (3)

the RS-RFO implementation is a bit more elaborate. Here the goal is achieved by multiplying
the S matrix, in Eq. (2), with a factor α,

EðqÞ ¼ Eðq0Þ+
1

2

1 Δ qtð Þ 1 gt

g H

� �
1

Δq

� �

1 Δ qtð Þ 1 0t

0 αS

� �
1

Δq

� � (4)

and varying this factor in a controlled fashion until the desired step length of τ is obtained
[12]. The usefulness of this approach rests, of course, on the selection of the step restriction
threshold, τ. It is clear that this value has to be selected in an ad hoc manner, since we do
not have any knowledge in advance on the error of the surrogate model compared to the par-
ent model. That is, at best we can provide a reasonable guess of what the value should be,
based on the discrepancy between the parent and the surrogate model in the past iterations.
Note, there is no explicit control or estimate of the validity of themodel for any new structure.

Approximate Hessian

The quasi-Newtonmethod relies on an approximate Hessian in combinationwithHessian-
update methods. This approximate Hessian can be computed either using standard molecu-
lar mechanics or semiempirical methods, or with some (possibly simplified) ab initio
approach [13–15]. For example, a Hessian derived from approximations to the SCF method
has been suggested [16]. However, a favorite estimation procedure for the generation of an
approximate Hessian is the Hessian model function (HMF) by Lindh et al. [17]. The approach
relies on very few parameters and is for that very reason rather trivial to implement from
scratch. Moreover, it is applicable to any kind of covalent type of bonding situation.

It is fair to say that some of these approximations are very crude. However, with the com-
bination of Hessian-update methods, it is sufficient that the approximate Hessian generates
an accurate enough separation of soft and stiff modes. After that the Hessian-updated quasi-
Newton method will, after very few extra iterations, reach the same final structure as if an
analytic Hessian had been used. In this respect, from a CPU time perspective, a few extra
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iterations of computing the energy and gradients will be significantly more efficient than
computing the analytic Hessian.

Hessian-update methods

Hessian-updatemethods are procedures to correct an approximate Hessian such that there
is a consistency between the analytic gradient information at selected iterations and the ap-
proximate Hessian, under the assumption that the potential is quadratic—which it is not in
general but to some extent close to the equilibrium structure. The updated approximate
Hessian—evaluated at iteration i + 1, is expressed as the sum of the previous approximate
Hessian and a correction matrix.

Hi+1 ¼ Hi + Hcorr (5)

The so-called quasi-Newton condition is based on the difference between two gradients—
derived from the second-order Taylor expansion of the energy. That is,

gðqiÞ ¼ gðq0Þ+H � ðqi � q0Þ (6)

which will for two subsequent iterations generate the condition

gðqiÞ � gðqi+1Þ ¼ H � ðqi � qi+1Þ (7)

The update procedure proposes a correction matrix, Hcorr, such that the condition is fulfilled.
The quasi-Newton condition effectively includes n independent equations (one for each in-
ternal coordinate), while the correction matrix—a symmetric matrix—has n(n + 1)/2 degrees
of freedom. Hence, the quasi-Newton condition does not define a unique update. Rather, ad-
ditional constraints, for example, that the norm of the correction should be as small as pos-
sible, or that the Hessian index (the number of negative eigenvalues) should or need not be
preserved during the update procedure, will define unique update methods. Consistent with
this, two classes of rank-2 update procedures have been developed, those to be used for op-
timizations of equilibrium structures (which ensure, or at least preserve positive definiteness
in the approximate Hessian) and those for finding transition state geometries (which allow
changes in the Hessian character). In the first class, the most popular update is the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) update [18–21], where the update is expressed as

Hi+1 ¼ Hi +
yiy

t
i

ytiΔqi
�HiΔqiðHiΔqiÞt

ΔqtiHiΔqi
(8)

where yi ¼ g(qi+1) � g(qi) and Δqi ¼qi+1 � qi. A similarly devised update—the Murtagh-
Sargent-Powell (MSP) update—has been constructed to be optimal for transition state
optimizations [22, 23]. These update methods have been modified over the years as, for
example, described by Bofill [24]. Finally, these update methods are normally applied to
the approximate Hessian using the data from the last 5–20 iterations—TS optimizations tend
to require more updates.

It is worth noting here that in terms of a quasi-Newton approach approximating the parent
model, the quasi-Newton condition and the update methods at the best will converge to the
analytic Hessian close to a stationary point on the PES. For any other geometry the update is
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only effective and will contain higher order contributions—anharmonic contributions—
whose effects have not been analyzed. Furthermore, the nature of the update procedure is
such that it will only provide a surrogate model which is consistent with the most recent up-
date. For any other structures the analytic gradient of the data set and the ones of the surro-
gate model will have a mismatch unless displacements and gradients are all orthogonal.

Choice of coordinates

This section deals with the coordinates used in connection with conventional molecular
structure optimization. Coordinates typically usedwithML approaches will not be discussed
here but are rather discussed in the subsequent sections.

The selection of coordinates is instrumental in improving the convergence rate of geometry
optimizations. First, one strives toward a coordinate representation in which the Hessian is
diagonally dominant—in the right representation the harmonic model will correspond to in-
dependent harmonic oscillators. Second, coordinates which in some sense are natural—they
try to follow the valleys of the PES as you move in between stationary points—would also
have an advantage.

The initial use of Cartesian coordinates was pretty obvious and to some extent represents
an unambiguous selection of coordinates. However, it became quickly clear that this was
suboptimal for the various reasons discussed earlier—the Hessian is strongly coupled and
the Cartesian coordinates describe rectilinear motions, while significant parts of molecular
motion are curvilinear. Several improvements have been suggested over the years. The
use of the normal modes expressed in terms of Cartesian coordinates will to some extent take
care of the coupling (the normal modes are evaluated in most cases by diagonalization of the
approximate Hessian). However, it should be noted that a strict quasi-Newton approach is
invariant to a linear superposition of the coordinates. In this respect, the use of the normal
modes in the basis of Cartesian coordinates will only allow for a trivial elimination of the
translational and rotational degrees of freedom [25, 26]. Rather, the use of coordinate that
are truly internal (void of translation and rotational components), and that can be of curvi-
linear nature (as in an angle bend or a torsion), would be preferred. There has been a number
of attempts to implement this, such as the so-called Z-matrix method [27] or the approach
with natural coordinates [28, 29]. Both of these implementations fulfill the previous criteria
by using linear combinations of a set of nonredundant bond lengths, bond angles, and bond
torsions, as the internal coordinates are explicitly free of translation or rotation. However,
these approaches have a fundamental problem with ring-like systems. Here the selection
of nonredundant coordinates could not treat these rings in an equivalent unbiased way—
all bonds and the corresponding angles cannot be included, then which ones should be ex-
cluded? This problem was subsequently removed by the use of redundant internal coordi-
nates and a general scheme for the elimination of the redundancy [30]. An extension of the
use of redundant internal coordinate was later proposed in which the elimination of the re-
dundancy is done so as to optimize the stiffness of the proposed internal coordinates [31].

We finally note that the forward transformation from coordinates and gradients expressed
in terms of Cartesian to internal coordinates is trivial, while the back-transformation from in-
ternal coordinates to Cartesian coordinates requires an iterative procedure.
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Constrained geometry optimization

Constrained optimizations can be used for several reasons, for example, for the purpose of
identifying points of intersystem crossing (ISC, as in singlet-triplet transitions) or internal
conversion (also called conical intersections) where the PES of states of the same spatial
and spin symmetry cross. In these cases, both the energy and the molecular structure are
of significance. For other reasons, one might be interested in energies subject to geometrical
constraints. One might be interested in finding how the energy varies with respect to the
change of a bond distance or the bond angle, or one could be interested in a zero-temperature
reaction path of the PES (e.g., exploring the energy profile of a chemical reaction from a re-
actant to a product structure via a transition state structure).

The technology for constrained optimizations has developed to significant maturity and
can be summarized into three levels of sophistication: (i) optimizationswith penalty functions
[10], (ii) optimizations using the technique of Lagrange multipliers [32–34], and a further de-
velopment of the latter into (iii) the direct method [35], and (iv) the projected constrained op-
timization (PCO) [36, 37]. All of these are consistent with fact that some function ζ(q) should
have some desired value ζ0. This could apply to a single or a multitude of constraints, we will
here limit the discussion to the case of a single constraint. In the first approach, a simple pen-
alty function, f (a function of ζ(q)� ζ0, and with the properties f(x)� 0 and f(0)¼ 0), is simply
added to the energy expression with a penalty factor γ, which determine to what extent we
accept an error in relation to the total energy. This new energy expression, let us call it L,

LðqÞ ¼ EðqÞ+γf ðζðqÞ � ζ0Þ (9)

is then minimized with respect to the geometrical parameters, that is, the coordinates for
which

rqLðqÞ ¼ rqEðqÞ+γ ∂f
∂ζ
rqζðqÞ ¼ 0 (10)

is obtained. This is a simplemethod to implement, however, at convergence the approachwill
not exactly fulfill the constraint but rather have an error whosemagnitude is controlled by the
penalty factor. This artifact is alleviated by the use of the technique of Lagrange multipliers,

Lðq, λÞ ¼ EðqÞ+λf ðζðqÞ � ζ0Þ (11)

The difference between Eqs. (9) and (11) is that in the latter, the new energy expression—the
Lagrangian—is a function of both the molecular structure and the so-called Lagrange multi-
plier, λ, while in the former γ is a simple parameter with a fixed value. Also, in Eq. (11), the
function f(x) need not be positive. The stationary point is found at

rqLðq, λÞ ¼ rqEðqÞ+λ ∂f
∂ζ
rqζðqÞ ¼ 0 (12)

∂Lðq, λÞ
∂λ

¼ f ðζðqÞ � ζ0Þ ¼ 0 (13)

This implies a minimization in a space of 3N � 6(5) + M degrees, where M is the number of
constraints, a bit of a contradiction since the subspace in which the minimization is to be
conducted has a dimension of 3N � 6(5) � M. Furthermore, the Lagrangian Hessian has a
negative eigenvalue for each constraint resulting in that the optimization is a
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minimization–maximization problem. Here the separation into the two different subspaces is
based in the eigenvectors of the approximate Hessian—a procedure littered with possible
problems. This dilemma was resolved with the direct approach in which the subspaces
are separated to first order. Here the optimizations of the constraints are treated separately
while the minimization is still done in 3N � 6(5) dimensions [35]. While this is a major leap
forward there is still the issue that the Hessian can have negative eigenvalues, and that which
Hessian-updatemethod to use is not obvious. Thiswas finally resolved by the PCOprocedure
of Anglada and Bofill [36], which introduces a linear variable transformation to the two dif-
ferent subspaces, x and y, for theminimization and fulfillment of the constraints, respectively.
First, a second-order equation in 3N � 6(5) � M dimensions and a Hessian that is positive
definite is defined, and then a first-order equation in M dimensions is defined.

Geometry optimization in the direct inversion of the iterative subspace

An alternative to the quasi-Newton approach is the so-called GDIIS method [38], which
deserves to be mentioned here. Although not strictly a quasi-Newton approach, it is based
on a harmonic approximation of the PES.While the quasi-Newton approach is only indirectly
based on the previous structures and gradients—through the iterative history and the
Hessian-update method—the GDIIS approach does explicitly use this information at each it-
eration. We note that the method is not really a surrogate model, but has the assumption of a
harmonic surface in common with the quasi-Newton methods. Hence, it shares most short-
comings with that family of optimization methods. In the GDIIS approach, the coordinates of
each structure generated so far are expressed as

qi ¼ q* + ei (14)

where i is the iteration count, q* is the unknown equilibrium structure, and ei is the associated
displacement/error vector for the ith iteration. A new coordinate is formed as

qi+1 ¼
X
i

ciqi ¼ q* +
X
i

ciei (15)

under the constraint that the coefficients add up to unity,X
i

ci ¼ 1 (16)

A stationary point is found by the conditionX
i

ciei ¼ 0 (17)

This would be nice if it were not for the fact that both q* and the eis are unknown. Here the
approach makes an estimate, assuming that the energy functional is nearly quadratic and the
approximate Hessian—improved by Hessian-update methods—is accurate enough, through

ei ¼ �H�1gi (18)

No exact solution can in general be obtained. Instead, optimal coefficients are found through
theminimization of the norm of the error vector under the constraint. This optimization prob-
lem is solved using a standard Lagrange multiplier approach. This approach has been very
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successful, in particular for optimizations starting close to the equilibrium structure—here
the error vectors are accurate provided that a high-quality Hessian is used. However, the
method has also demonstrated inferior behavior such as converging to nearby stationary
points of higher orders or oscillating around inflection points. There has been a number of
tricks proposed to minimize the impacts of these flaws [39], at which time it has been argued
that the GDIIS approach is on par with quasi-Newton methods as the RFO method with
respect to the convergence rate.

Machine learning methods for structure prediction

ML methods have been used for the prediction of structures of chemical systems. Signif-
icant contributions have been reported in fields like protein structure prediction [40–42], RNA
secondary structure prediction [43], or crystal structure prediction [44, 45]. These are systems
characterized by their large number of degrees of freedom, the importance of long-range in-
teractions, and/or the existence of a myriad of local minima in their PES; the MLmodels typ-
ically use a combination of data mining, analogy modeling, heuristics, and refinement with
physically based models. However, this kind of application is not the topic of this chapter,
and we will therefore not discuss them in detail here. Let us briefly state the reasons for this.

1. We are interested in general structure optimization, not limited to a particular class of
chemical systems or compounds. ML methods used for structure prediction are typically
designed for specific types of systems (e.g., proteins or molecular crystals).

2. The optimization must be flexible, allowing for determining the location of different types
of critical points, the incorporation of constraints, etc. The methods mentioned earlier only
deal with the prediction of stable or the most likely structures.

3. The optimization should be applied to arbitrary quantum chemical methods. The problem
we address in this chapter is not which electronic structure method can provide more
realistic molecular structures, but how to efficiently find the molecular structure that a
given electronic structure method predicts. The goal of structure prediction with ML
methods is most of the time predicting experimental data.

4. The result must be accurate. When minimizing the energy, for instance, it is important that
the resulting molecular structure represents a true minimum of the PES (within some
operational accuracy). MLmethods tend to provide approximations or reasonable guesses
for what the minimum structure would be.

The present chapter is concerned with finding minima or other notable points of arbitrary
multidimensional functions, with particular attention to the specificities of PESs, and howML
techniques can be of assistance. In this sense, structure prediction methods are only useful—
and this is often of no minor importance—as a means to generate an initial or a set of initial
structures that can be subsequently optimized to locate the actual structures of interest. For
example, these methods can provide a number of likely structures—conformers or isomers—
for a molecular system, each of them to be further refined and have its energy (or other prop-
erties) evaluated.

In this respect, we can nevertheless highlight some recent works aimed at medium-sized
molecular structures, which are the most common target of quantum chemical studies.
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Mansinov et al. [46] proposed a deep neural network that, after being trained on observed
(experimental or computed) structures of a class ofmolecules, could generate a sample of con-
formations for new molecules. The quality of the resulting structures was competitive, better
by some measures, with standard force field optimizations, meaning that they could as con-
fidently be used for further optimization with quantum chemical methods; and the compu-
tational cost for generating each structure was significantly lower. The input features for the
neural network were both atomic (e.g., element, hybridization, formal charge) and bond (e.g.,
connectivity, type of bond). Lemm et al. [47] used a similar approach, but based on kernel
ridge regression instead of neural networks. The input features were restricted to elements
and connectivity, and the structure prediction was extended to TS and crystalline solids.
The authors recognized that this kind of approach can be useful for generating initial struc-
tures not only for optimization, but also to serve as training sets for other ML models for the
prediction of properties from structures. With the specific goal of generating initial structures
for TS optimization, Mako�s et al. [48] used neural networks to predict TS structures from the
Cartesian coordinates of reactants and products. The generated structures, in general, were
observed to lead to a successful TS optimizationmore consistently than the popular quadratic
synchronous transit (QST2) [49].

Another way in which ML methods can assist in molecular geometry optimization is by
replacing the target PES with some other model that is much cheaper to compute and on
which regular optimizations can be performed without particular concerns about the effi-
ciency. This is the strategy commonly used when one employs, for example, molecular me-
chanics force fields to preoptimize a given molecular structure before proceeding to a more
costly optimization on quantum chemical PES. A number of ML models have been proposed
to provide amore accurate alternative to force fields, although theymust often be trained for a
particular system or type of systems [50, 51]. This is, however, again a different problem, and
it has more to do with generating a surrogate model for the optimization than with the op-
timization itself, something that is discussed in more detail below.

Machine learning-based surrogate PES

In this section, we will initially discuss why ML techniques might be of interest to proce-
dures dealing with molecular structure optimizations. This is followed by a brief motivation
on which ML method might be the most suitable for this purpose. Finally, we will walk you
through the early development of ML methods to generate global surrogate PESs as used in,
for example, molecular dynamics—using both neural networks (NN) and kernel methods—
to the most recent developments on the use of GPR for local surrogate models used in equi-
librium, transition state, and constrained optimizations, and the computation of minimum
energy paths. In the subsequent section, we will in some details describe a gradient-enhanced
Kriging (GEK) implementation in associationwith the use of internal coordinates, anHMF, an
alternative rationale for selecting the individual characteristic length-scales, and an RVO
procedure.

WhileML techniques are usually associatedwith large data sets—as large as several orders
of magnitude times the number of the molecular degrees of freedom—and an attempt to find
a general solution to a problem, for example, to replace a parent method with a global fitted
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surrogate model, it has been demonstrated that for locally accurate surrogate models in as-
sociationwith someML techniques only a rather limited set of data points—far fewer than the
number of degrees of freedom—is required. It is fair to say that while neural networks nor-
mally fall in the category of the former, GPR is more attuned to the requirement of the latter
[52, 53]. For this particular reason, if anMLmethod is to be used in associationwithmolecular
structure optimization it is natural to examine the development potential of the GPR ap-
proach. Furthermore, the nonparametric nature of the GPR has several advantages over
RS-QNR and RS-RFO procedures. In comparison, the GPRmethods will facilitate a surrogate
model that (i) can support the description of more than just one stationary point, (ii) can re-
produce the PES at the data points, (iii) will converge to the parent model as the number of
data points is increased, (iv) can mimic anharmonic characteristics, and (v) will produce an
analytic estimation of the expected dispersion at any point. The second-order quasi-Newton
methods cannot meet any of these criteria.

In the search of an ML method that will be sufficiently accurate locally, it is for efficiency
considerations instrumental that such a method employs all the information from the parent
model as the optimization procedure proceeds. That is, all analytic information has to be
employed—in standard ab initio calculations this would translate to use not only the energies
but also the gradients. Furthermore, theMLmethod should to a large extent efficiently use the
information it has been provided and not waste it as the iterative procedure proceeds. The
GEK [54–56] is such an ML procedure. The method is based on GPR, an extension of the
Kriging method [57, 58] in which the fitting is applied to both the function value and the gra-
dient of the parent PES.

What follows is a short review of the scientific studies that have been performed on the
subject of the use of ML methods to generate surrogate models, for both a global and a local
fit. ML algorithms have been used in computational chemistry, for example, as a mean to
speed up molecular dynamics calculations. Here ML methods, especially techniques based
on neural networks, were used to generate global surrogate models [52, 59–63]. The use of
other ML methods has also been explored, for example, the use of support vector machines
to create the transition state surface that separates the reactants from the products [64], and
the use of reinforcement learning to eliminate the line-search step in quasi-Newton optimi-
zation without any loss of efficiency [65]. Another ML-like approach is the Gaussian approx-
imation potential (GAP) approach [66–68]. This approach, however, depends on the selection
of descriptors which can be difficult to generalize for it to be applicable in general [69]. A new
direction was presented in a series of papers in 2015–16 [70–73] by Cui and Krems, who were
the first to report on the use of GPR as a mean to accurately represent PES for collision dy-
namics and scattering processes studies. They demonstrated that accurate PESs for the Ar–
benzene complex could be obtained by using data from just some 200 trajectories of classical
dynamics. Further, they found that the Mat�ern correlation function [74] gives improved ac-
curacy as compared to standard Gaussian correlation functions. This approach has also been
used by others to represent multidimensional reactive PESs [75]. Inspired by the comment of
Peterson [52]—“… the training sets are small, so an SVR [(support vector regression)] model
may offer superior characteristics to an NN model”—Koistinen et al. were the first to report
on the use of GPR for a local fit in association with the computation of minimum energy paths
between different arrangement of a heptamer island on a crystal surface [76]. In their study,
they report a reduction of actual energy and gradient evaluations by as much as 80%. The

402 17. Molecular structure optimizations with Gaussian process regression



implementation was based on the use of Cartesian coordinates and the GPR hyperparameters
were reoptimized at every instance a new energy and gradient were added to the data set. In a
recent study by the same group, again on the calculations of minimum energy paths, the use
of inverse interatomic distances in the covariance function was explored on two previously
problematic cases [77]. The use of the inverse interatomic distances resolved the problems and
proved to also improve performance on the originally reported benchmark. Another example
of a local surrogate model to accelerate optimizations was published by Schmitz and
Christiansen, in a work where they used GPR and adaptive delta learning to approximate
the gradient of an expensive electronic structure method [78]. In 2018, Denzel and K€astner
published two papers in which GPR was used for molecular equilibrium and transition state
structure optimizations, respectively [79, 80]. An iterative strategy is applied in which the
desired structure is found on the surrogate PES, using some standard second-order
optimizer—microiterations—the energy and gradients at this structure is then evaluated
on the parent PES—macroiterations—and checked for convergence conditions. If not
converged the data from the parent model is used to enhance the surrogate model and the
process is repeated. This implementation used Cartesian coordinates, a Mat�ern covariance
function (ν ¼ 5/2), an empirically set universal characteristic length scale of 20 a0, a prior
mean to be 10 Eh higher than any energy in the data set (to guarantee that the energy of
the surrogate model is bound), an overshooting approach, and a multilevel GPR approach
to reduce the scaling as the iteration count exceeds a threshold value. All this in combination
with an L-BFGS optimizer [81] at the level of themicroiterations. For the TS optimization case,
a P-RFO [7] approach was used. The authors reported substantial reductions in iterations
counts. Subsequently, a number of other groups have more or less applied the same recipe
with small variations to optimizations of equilibrium structures, TS structures, andminimum
energy paths [69, 77, 82–88]. Here, the reports by Koistinen et al. [77, 86] stand out because of
the use of inverse interatomic distances in the covariance function, rendering the surrogate
model invariant to rotations and translations. In 2020, Meyer and Hauser [89] published
an extensive benchmark on the performance of GPR-assisted molecular structure optimiza-
tion based on different selections of coordinates and two different covariance functions. In
their study, convergence rates are reported for Cartesian coordinates, inverse distances,
and Z-matrix internal coordinates. The latter two coordinates are explored in four different
flavors: fully redundant, delocalized, localized, and reduced redundancy. In terms of the
Cartesian coordinates both a squared exponential (Gaussian) and a Mat�ern covariance func-
tion (ν¼ 5/2) were explored. They concluded that internal coordinates in any formwere to be
preferred over Cartesian coordinates. Furthermore, they stated that “[t]he lack of heuristics
on actual force constants and couplings can only be partially compensated by the choice of a
suitable set of internal coordinates, and future undertakings will have to encode this
knowledge, e.g., via a pre-informed choice of hyperparameters in their machine learning
models.” This call is answered by an approach which suggests that the individual character-
istic length scales of the internal coordinates be based on the eigenvalues of the initial estimate
of the Hessian, in combination with an RVO procedure [2, 3]. Explicit details of this imple-
mentation, as used for optimization of equilibrium and transition state structures, and
constrained optimizations, as inminimum energy path calculations, are the subject of the next
section.

403Methods



The restricted variance optimization method

This section is devoted to the description of the GEK in associationwith RVO [2, 3].Wewill
not at this place reiterate the full set of equations and properties of GPR, in general and GEK,
in particular. We assume that the reader is familiar with the subject from the previous Chap-
ters 9 and 10 of this book. However, when significant for the presentation some details of the
procedure will be repeated here.

The RVOmethod, based on GEK, was developed in light of that the standard second-order
optimization schemes in general work very well—some aspect of this approach is optimal—
and the growing experience on the successful components of an optimal GPR-based proce-
dure. In this respect, the facts that the choice of coordinatesmakes a significant difference, that
the benefit of a good estimate of the Hessian is instrumental, and that a step restriction is an
integral part of an efficient implementation were natural constraints to the development. We
now start with some of the details of the GEK that we will need in our discussions below. For
more details on GPR and how the derivative (gradient) information is included, see the
Chapter 9 on kernel methods.

In the Kriging and the GEK the surrogate model—E*(q)—will predict the energy as a func-
tion of the coordinates (arbitrary coordinates) of the molecular system, q.

E*ðqÞ ¼ μ + vðqÞtM�1ðy� 1μÞ (19)

where the first term, μ, is the baseline or trend function, while the second term is the local
deviation of the energy around μ [56]. Here, y is the column vector of generalized function
values from the source data, and 1 is a vector with the value of one and zero for elements
corresponding to energies and gradients, respectively. The generalized covariance matrix,
M, is a function of the covariance function, f(dij), where dij is a scalar generalized distance be-
tween the coordinates at sample points i and j, in our case expressed as

dij ¼ dðqi, qjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXK

k¼1
qi,k � qj,k

lk

� �2
s

(20)

where K is the number of degrees of freedom of the molecular system (K ¼ 3N � 6 for a
nonlinear system with N nuclei and no external fields), lk is a scale parameter that influences
the width of the covariance function—the characteristic length scale—in the kth dimension.
When all lk are equal, this is simply the (scaled) Euclidean distance. The generalized covari-
ance vector v(q) is defined analogously. Finally, the RVO implementation followed the liter-
ature and used a Mat�ern covariance function of order p ¼ 2 (i.e., ν ¼ (2p + 1)/2 ¼ 5/2),

f 2ðdijÞ ¼
5d2ij

3
+

ffiffiffi
5
p

dij + 1

 !
e�

ffiffi
5
p

dij (21)

For a positive definiteM (which is guaranteed by aMat�ern covariance function), the expected
variance for the prediction is given by [90]

s2ðqÞ ¼ ðy� 1μÞM�1ðy� 1μÞ
n

½1� vðqÞtM�1vðqÞ� (22)
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where the first factor accounts for the variance of the sample points, while the second mea-
sures the distance of q to the sample points, and will give zero whenever q ¼qi. Assuming a
Gaussian variance, the actual energy can thus be estimated, with a 95% confidence, to lie in
the interval E*ðqÞ � 1:96

ffiffiffiffiffiffiffiffiffiffiffi
s2ðqÞp

.
Themost demanding component in this surrogatemodel isM�1. In practice, insteadof com-

puting the inverse of the matrix, it is more efficient to directly compute the product of the in-
verse and a vector—either ω(q)T ¼ v(q)TM�1 or w ¼M�1(y �1μ)—and Eq. (19) then becomes

E*ðqÞ ¼ μ +
X
i

ωiðqÞðyi � δiμÞ (23)

or

E*ðqÞ ¼ μ +
X
i

wiviðqÞ (24)

where δi is an element of 1, that is, its 1 for elements corresponding to energies and 0 for el-
ements corresponding to gradients. Eq. (24) is particularly attractive, because it is simply a
linear combination of “basis functions” vi(q) that depend only on the chosen covariance func-
tion and the coordinates of the sample points, qi:

viðqÞ ¼ f ðdðqi, qÞÞ (25)

In the case of GEK, v(q) contains not only the covariance function, but also its derivatives with
respect to each degree of freedom, and so for n sample points and m dimensions

E
∗ðqÞ¼ μ+

Xn
i

wif ðdðqi,qÞÞ+
Xn
i

Xm
k

wj
∂f ðdðqi,qÞÞ

∂qk
(26)

where j simply indexes all them derivatives for each of the n sample point in some convenient
consecutive order. Sincew does not depend on the coordinate where the energy is evaluated,
the derivatives of E*(q)—the gradient and Hessian of the surrogate model—are easily eval-
uated from the first, second, and third derivatives of the covariance function f:

∂E*ðqÞ
∂qk

¼
X
i

wi
∂viðqÞ
∂qk

(27)

∂
2E*ðqÞ
∂qk∂ql

¼
X
i

wi
∂
2viðqÞ
∂qk∂ql

(28)

Let us add some words on the scaling aspects of GEK. The covariance matrix,M, has a di-
mension of dM¼ n(1 +m)—for each point in the data set, n of them, there are (1 +m) data items
(one energy and them components of the gradient), wherem is the dimensionality of the sur-
rogate model. Since the GEK will involve solving a system of equations, effectively inverting
M, the effective scaling of the procedure of the approachwill scale to the order of d3M. With this
in mind one has to be very mindful on when to use this approach. Normally the GEK is
appropriate in cases with ab initio studies of small to modestly sized systems, however,
for extremely large molecular systems in association with molecular mechanics the trade-
off is questionable.
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We will now in sequence address and explain some details of the RVO implementation,
which is a multilayer algorithm—it microiterates on the surrogate model and macroiterates
on the parent model—mimicking an RS-RFO procedure (see Fig. 1). This will be followed by
an assessment of the method in comparison with a state-of-the-art implementation of the
RS-RFO method.

Hessian approximation

An integral part of the RVO supported by GEK is the use of an estimated Hessian. Much of
what follows has its origin in the quality of such a guess. To address this need the HMF of
Lindh et al. [17] was selected. This procedure will be used to produce a new estimate each
time a microiteration is done.

Coordinates

The selection of coordinates is very important to the potential success of the surrogate
model. One important aspect is that the surrogate model should be invariant to the rotations
and translations. Hence, internal coordinates are mandatory. Here the space of coordinates is
selected to be spanned by the nonredundant force-constant-weighted (FCW) internal coordi-
nates [31] of Lindh et al. The final selection of redundant coordinates, however, are the eigen-
vectors of the HMFHessian expressed in terms of FCW internal coordinates. The eigenvalues
of the Hessian will be a crucial part of setting reasonable values of the characteristic length
scales and the value of the trend functions—the hyperparameters.

The trend function

The selection of the trend function, μ, as a constant allows us to assist the surrogate model
with an important property—the surrogate model should be bound. So possibly any value
larger than any of the energies in the data set would do. However, we want a soft transition
to regions of coordinate space that have not been explored. Hence, a too large value would
hamper convergence and make the procedure too slow. Actually, we would like to explore
the unknown in a more controlled fashion and not have a too hard boundness interfere with
such a procedure. After some experimental calculations, an empirical value of μwas set to be
10.0 Eh above the highest energy in the data set.

The characteristic length scales

The success of standard second-order optimization schemes is that the force constants are
very reasonable. This quickly guides the optimization toward convergence. This could pos-
sibly be faked by extending the GEK to also includeHessian information, but would probably
be of no help since the Hessian is just an approximation. Is there any other way we could get
the GEK to mimic that it has a Hessian that is similar to the one used in the quasi-Newton
optimization? Yes, we can play a trick with the hyperparameters. In general, this is not ana-
lytically possible. However, for a single data point (in our case for the last computed struc-
ture) the surrogate model Hessian is diagonal, with elements given by

HðqiÞkk ¼ ðμ� EðqiÞÞ
∂
2f

∂ðqkÞ2
(29)

It follows that the l values can be set, for a Mat�ern-5/2 kernel, Eq. (21), from the following
expression
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FIG. 1 Schematic comparison of the conventional RS-RFO optimization method (top) and the proposed RVO al-
gorithm, based on a GEK surrogate model, and using RS-RFO in the microiterations (bottom).
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lk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5ðμ� EmaxÞ
3HHMFðqiÞkk

s
Emax ¼ max

i
fEðqiÞg (30)

where lk is the characteristic length of coordinate k andHkk is the corresponding eigenvalue of
the approximate Hessian (which is always positive definite [17]). Thus, in this GEK imple-
mentation the individual characteristic length scales are set to reproduce the HMF Hessian
PES curvature at themost recent point. The GEKwith the full set of data points will effectively
serve the purpose of a Hessian-update procedure. We note that for too small values of the
eigenvalues of the Hessian large characteristic length scales will result. For that purpose
HHMF(qi)kk is set to be not smaller than 0.025 Eha0

�2.

Restricted-variance optimization

As discussed earlier, the RS-RFO method has been shown to be an extremely efficient and
robust optimization procedure. The step restriction has been demonstrated to work best in a
setting in which its threshold is dynamically updated as the optimization proceeds. This has
to be based on some ad hoc definition on how trustworthy the rational function is at the cur-
rent point and how large should the trust radius be. The GEK surrogate model has here a
significant advantage, there is an analytic estimation of the variance s2(q) at any point in
space. In this respect, we have developed a type of restricted-step RFO procedure where
the step restriction is not based on the associated length of the step but rather on the value
of the variance of the surrogate model at the suggested new molecular structure—the
restricted-variance optimization procedure. The variance restriction is enforced by making
sure that every microiteration (see Fig. 1, bottom right) produces a 95% confidence interval
within the specified threshold, σRVO, that is,

1:96
ffiffiffiffiffiffiffiffiffiffiffiffi
s2ðqjÞ

q
� σRVO (31)

As the optimization is converging, the threshold is reduced. In the case of constrained opti-
mization, the variance threshold for the individual subspaces is roughly speaking half of the
total threshold (for details consult Ref. [3]).

This RVO implementation has been benchmarked against a state-of-the-art second-order
method, RS-RFO, for equilibrium, transition state, and constrained structure optimizations,
and for the computation of reaction paths. Both methods have been implemented in the
open-source quantum chemistry program package OpenMolcas [91]. We will briefly reiterate
the results here but recommend the reader to consult the original papers for a more verbose
representation of the benchmark test suites and the results. The performance for the optimi-
zation of equilibrium structures was benchmarked on the extended Baker [15] (e-Baker), the
Baker-TS [92], and the S22 [93] suites of molecules. The e-Baker test suite is a collection of
33 molecular structures preoptimized at a lower level of theory. For these benchmarks both
the HF and the DFT level of theory was employed. The calculations at the HF level were pri-
marily used to train the approach on the values of the trend function and some of the thresh-
old values used therein. The Baker-TS test suite is a set of 25 molecules close to a transition
state structure, while the S22 test suite is a set of 22 molecular complexes stabilized by hydro-
gen bonding and/or van derWaal forces. The results from these benchmarks are presented in
Fig. 2. In the case of the e-Baker/DFT benchmarks not much improvement was expected,
since the starting structures are close to the equilibrium structures. However, the RVO shows
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a reduced total iteration count of some 22%. This is not bad considering that RS-RFOmethods
have been developed and refined for a very long time while the use of ML in the RVO ap-
proach is very novel. There must be room for some more improvement. For the Baker-TS
benchmark we also have access to the results of Denzel and K€astner [79] where they report
iteration statistics for a conventional implementation—L-BFGS [81]—and theGPR implemen-
tation of their own making. Both implementations are available in the open-source optimiza-
tion library DL-FIND [94]. While both ML-based approaches demonstrate a considerable
speed with respect to their conventional counterparts—the RVOwith a reduction in the num-
ber of iterations by some 28%—it is noteworthy that the conventional implementation of
RS-RFO in OpenMolcas is twice as efficient as L-BFGS and the RVO implementation in the
same package is 2.49 times faster than the GPR implementation in DL-FIND. This is possibly
partially associated by the use of Cartesian coordinates—the surrogate model is not transla-
tion and rotation invariant—and a single characteristic length scale in the latter. For the
benchmark optimization of molecular complexes stabilized by weak forces and with an ex-
pectation of a PES with significant anharmonic characteristics—the S22 test suite—the RVO
procedure demonstrated superior performance.

The Baker-TS benchmarking gave the possibility to benchmark both constrained and TS
optimizations. In the constrained calculations, the Baker-TS structures were optimized with
conditions such that the final structure should have the structural characteristics of the TS
geometry. In the case of the TS optimization, this initial constrained optimization was relaxed
as soon as the surrogate model provided a Hessian with one negative eigenvalue. At this
point, the optimization adapted the RS-I-RFO approach under the umbrella of RVO. The re-
sults of the constrained optimization are presented in Fig. 3. With no exceptions, the RVO
procedure is superior to state-of-the-art second-order restricted-step optimization methods.
Moreover, it displays an impressive robustness and quickly converges four cases in which
conventional methods fail. For the transition state structure optimizations (see Fig. 4) we
again observe a familiar pattern, RVO represents an iteration reduction of some 26.5%. This
efficiency is attributed to a significant improvement during the latter part of the optimization,
probably due to the improved quantitative accuracy of the surrogate model’s Hessian.

FIG. 2 Total iteration counts in the different benchmark sets, obtained with the RS-RFO and RVO methods. For
comparison, the results from Ref. [79] for the Baker-TS set are also provided (L-BFGS and GPR). In the Baker-TS re-
sults, Cases 3, 5, 9, and 25 have been excluded for all methods.
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Finally, we take a look at benchmark calculations in the computation of reactions paths.
A collective analysis of all 25 reactions paths is presented in Fig. 5. Each reaction path calcu-
lation is done as a series of constrained optimizations, one for each point along the path, going
downhill from the TS, and each of these optimizations takes a number of (macro)iterations to
converge. The graph represents the number of optimizations that converged on a given num-
ber of iterations. Thus, the tallest barmeans that 250 points converged on three iterations with
RVO. This case demonstrated an almost 50% reduction in the number of iterations to establish
the reaction path. A possible source of this improvement is that the RVO procedure brings
along information from each point on the path, while the conventional approach starts losing
information already at the third iteration.

Beforewe rest our case on the benefits of the RVOapproach somewords on theCPU timings.
As addressed earlier, the RVO should have a scaling of the order of d3M. Here we report that, for
example, for the histamine–H+ molecule (3N � 6 ¼ 48 degrees of freedom) of the e-Baker test
suite, while the DFT time accounts for little more than 360 s per iteration both the RS-RFO and
the RVO procedures account for less than 1 s per iteration; or for a manganese cluster of
61 atoms (177 degrees of freedom) in which the ab initio energy and gradient calculations took
3480 s, the RS-RFO and the RVO algorithms took, respectively, 2 and 7 s per (macro)iteration.
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FIG. 3 Number of iterations to converge the Baker-TS structures to a constrained minimum. The circles represent
root mean square displacement between the converged structures.

FIG. 4 Number of iterations to converge the Baker-TS structures to a saddle point. The darker color in the bars in-
dicates the iterations with active constraints. The circles represent the root mean square displacement between the
converged structures.
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Case studies

In this section, we discuss some concrete practical examples of geometry optimization,
comparing conventional second-order optimization methods with the RVO method, which
makes use of ML techniques. The examples are very simple, although realistic. The first
one is a one-dimensional system, andwewill use an ad hoc implementation, whichwill allow
us to better understand the innards of the optimization, as well as play with the different pa-
rameters. The latter examples will make use of the existing implementation in the open-
source electronic structure software OpenMolcas [91]. Complementary materials for these
case studies can be found as described on the book’s companion website.

One-dimensional system (H2)

Our first example is an optimization of the H2 molecule. In this case, the selection of inter-
nal coordinates is trivial, as there is only one sensible choice: the interatomic distance. It is
therefore a one-dimensional system which allows easy visualizations.

We provide a full Python implementation (although it depends on the numpy and scipy
modules), with comments in the code. Here we will discuss the main features.

Instead of computing the energy ofH2 at different interatomic distanceswith some approx-
imate method, we use an analytical expression, which was obtained as a fit to high-quality
computational results [95]. In this way, we can easily compare with the “true” function
(i.e., the analytical fit) and quickly get results. But keep in mind that our goal is to apply these
methods to other functions that are unknown and/or much more expensive to compute. The
functional form of the fit is given by

EðrÞ¼ 2EðHÞ�De 1 +
X4
i¼1

ciðr�ReÞi
 !

exp ½�c1ðr�ReÞ� (32)

FIG. 5 Histogram of the number of iterations needed for optimizing each reaction path point.
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where E(H) is the energy of an isolated hydrogen atom (which is 0.5 Eh), and the values of the
parameters are:

De ¼ 0:173108 Eh c1 ¼ 2:208257 a0
�1

Re ¼ 1:401315 a0 c2 ¼ 1:468554 a0
�2

c3 ¼ 0:759565 a0
�3

c4 ¼ �0:033099 a0
�4

With this analytical form it is also straightforward to compute the gradient (i.e., dE(r)/dr),
which is left as an exercise to the reader.

Another piece we will need for our code is the HMF [17] that, for the specific case of H2,
reduces to

HHMFðrÞ ¼ k exp ðr2ref � r2Þ (33)

with k ¼ 0.45Eha0
�2 and rref ¼ 1.35a0. You will notice that this is not the true Hessian for the

analytical function at hand. In fact, it does not even have the correct behavior, since it will
only yield positive values, and it is very clear (once you plot it) that there are some places
where the curvature of our analytical function is negative. The purpose of the HMF is not
to approximate the true Hessian at all points, but only at a minimum, or to guess what the
Hessian would be if there were a minimum at r.

At this point we follow two different paths. First, we will create a program to find the min-
imum of E(r) with RS-RFO, the conventional method. Then we will do it with RVO, using
GEK as a surrogate model.

For the RS-RFO implementation, we start with Eq. (4) and simplify it for the case where q
(and g, and H) is one-dimensional, and replace q with r:

EðrÞ ¼ Eðr0Þ+
gΔr +

1

2
HðΔrÞ2

1 + αðΔrÞ2 (34)

and (another exercise) we find that this expression has a minimum where

αgðΔrÞ2 �HΔr ¼ g (35)

which we can solve for Δr, once we know g, H, and α.
In general, we would like to use a Hessian update method to improve the approximate

Hessian as the optimization proceeds. This means taking the aboveHHMF result and applying
some formula dependent on the previous coordinates and gradients. The most common for-
mula is the BFGS [18–21] one (Eq. 8). However, for the specific case of a one-dimensional sys-
tem, the update procedure removes all previous information and simply assigns to the
Hessian a value that depends on the last two points:

Hk ¼
gk � gk�1
rk � rk�1

(36)

that is, as soonaswehavecomputed the secondpoint,wewill not need theHMFanymore, since
the approximate Hessian will be fully determined by the previous coordinates and gradients.

The final pieceweneed is a dynamic step restriction, that is, away tomodify α in Eqs. (34), (35)
toensure that the resultingΔrdoesnot exceedaspecified limit. For thiswesimplyuse thefsolve
function of scipy, to give us a proper value of α if the default α ¼ 1 yields too long a step.
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The core of this optimization can then be expressed as the pseudocode in Algorithm 1.
When we run this example (optim_RFO.py), we obtain a series of graphs (press a key or

click the mouse to see the next one) showing our “true” function of Eq. (32) as a dashed line
and initially a single red point. This first point represents the initial structure, H–H with a
bond length of 5.5 a0. As we iterate, we also plot the RFO surrogate model, Eq. (34) (blue line),
and the minimum on this line, for which we compute the “true” energy (arrow to blue point);
this is the next guess for the minimum of the true function. Fig. 6 shows two graphs, after a
few iterations and at convergence. We can note several things about the process. The RFO
surrogate curve only fits the last computed point and is in general not a very good approx-
imation to the target function. At convergence, once a minimum is located, the RFO curve is a
much better approximation, but still only around the minimum. The step size restriction is a
severe limitation for a speedy progress; we could increase it with no harm in this case
(max_step), but the default value of 0.3 is safer on most occasions.

Let us try this with the RVO method. The main differences are that the surrogate curve is
given by a GEKmodel instead of RFO, and that we will use a variance restriction instead of a
direct step length restriction. The code for building the GEK model is provided in the file
kriging.py, and it looks more complicated than it needs to, because it allows any number
of dimensions, not just 1. Two different kernels are included, Mat�ern-5/2 and Gaussian. The
characteristic length, or l value, is set according to theHHMF value as in Eq. (30) (for a Mat�ern-
5/2 kernel), and the number of data points is limited to 5 in this example.

For the variance restriction, the strategy is as follows: We first find a minimum on the sur-
rogate curve with the optimize function from scipy. If the variance computed at that point

ALGORITHM 1

R S - R F O a l g o r i t h m .

X  initial r

Y  E(X)
dY  E0(X)
ddY HHMF(X) ⊲ Initial guessed Hessian

repeat

alpha  step_restriction(X,dY,ddY) ⊲ Find value of α

new RFO_min(X,dY,ddY,alpha) ⊲ Find value ofΔr (new¼ X +Δr)

X_old X ⊲ Save previous values

Y_old Y
dY_old dY
ddY_old ddY

X  new
Y  E(X)
dY  E0(X)
ddY (dY�dY_old)/(X�X_old) ⊲ Approximate Hessian

until dY < threshold
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is larger than the threshold, we use the fsolve function to find a point where the variance
equals the threshold. This is somewhat different to the microiterations used in other
implementations and discussed previously, but it is essentially the same result and allows
for a more transparent implementation in this simple example.

With these functions in place, the optimization is very similar to RS-RFO, as given by the
pseudocode in Algorithm 2.

FIG. 6 Two graphs from the H2 RS-RFO example. Top: Iteration 9. Bottom: At convergence.
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If we run this (optim_RVO.py), we get something similar to the RS-RFO case, but now the
estimated 95% confidence interval is plotted as a shaded area. Fig. 7 displays again the graph
after a few iterations and at convergence. We note that the variance restriction is more obvious
than the step restriction, but this is onlybecause the step restrictionmodifies the surrogate curve,
such that the next point is still itsminimum,while the variance restriction only changes theway
to choose the next point, and we clearly see that it is often not the minimum of the surrogate
curve. In fact, in the example at the top of Fig. 7, theminimumwould be somewhere on the neg-
ative r side,which is unphysical (this could also happenwithRS-RFO,with longer step lengths).
It is also clear that the variance restriction allows for longer step lengths as the surrogate model
has more data and gets more confident. During the optimization, the surrogate curve closely
follows the “true” curve between the last five points, and at convergence the fit around themin-
imum ismuchbetter than theRFO curve.Outside the region of the last five points, the surrogate
curve and the variance rise strongly (although it is not always visible at this scale), this is due to
the baseline or trend functionwe are using, which is at +9 Eh! At the end, at least for the settings
used here (which match typical default settings in any molecular structure optimization) the
RVO converges in about half the number iterations required with RS-RFO.

We hope that by playingwith this simple example youwill be able to better understand the
similarities and differences between the two methods, and the relationship between the dif-
ferent settings.

Two-dimensional system (H2O)

For the next example, we will use the OpenMolcas [91] software package, which offers
implementations of both the RS-RFO andRFOmethods. The system of choice is only slightly
more complicated than H2: a water molecule (H2O). In this case, the molecular structure is
fully determined by three coordinates (3N � 6, where N is the number of atoms), but the
choice of these coordinates is not as trivial as for H2. We could choose the three interatomic

ALGORITHM 2

RVO a l g o r i t h m .

X  initial r

Y  E(X)
dY  E0(X)
repeat

l  set_l(HHMF(X))
model.create(l,X,Y,dY) ⊲ Build GEK model from previous data

new var_restrict(model,X) ⊲ Find next trial point

X X [new ⊲ Append new values

Y Y [ EðnewÞ
dY dY [ E0ðnewÞ

until dY < threshold
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distances, or the three possible angles, or any combination thereof, or the H–O–H angle, the
average O–Hdistance and the difference between the two O–Hdistances, etc. Wewill, how-
ever, limit the scope to structureswith equalO–Hdistances, so inpractice the systemhasonly
two degrees of freedom. For the discussion at least we will choose the H–O–H angle and the
(equal) O–H distance as our coordinates.

Wewill examine two kinds of optimization: an unconstrained optimization searching for a
local minimum on the PES, and a constrained optimization where we also search for a struc-
ture with minimal energy, but imposing some constraint on the geometry, in particular a

FIG. 7 Two graphs from the H2 RVO example. Top: Iteration 5. Bottom: At convergence.

416 17. Molecular structure optimizations with Gaussian process regression



specific value for the H–O–H angle. In all cases, we will start from a structure with 1.4 Å O–H
distance and an angle of 80 degrees.

An input file for a plain optimization is given in Listing 1. Briefly, the ampersands (&) in-
dicate the beginning of the input of the different modules, and the > Do While and > End
Do lines enclose a loop that will be repeated until convergence. The &GATEWAY module de-
fines the system (Cartesian coordinates of the initial structure, basis set, and no symmetry
enforced). The &SEWARD, &SCF, and &SLAPAFmodules are invokedwith their default values,
and are used to compute the necessary integrals for the basis functions, to obtain the Hartree-
Fock wave function, and to propose a new geometry for the next iteration. If OpenMolcas is
properly installed, you should be able to run this as pymolcas -f filename.

Listing 1: Basic input for geometry optimization of H2O with OpenMolcas.

&GATEWAY
Coord = 3

O 0.00000 0.00000 0.00000
H 0.89990 1.07246 0.00000
H -0.89990 1.07246 0.00000

Basis = cc-pVDZ
Group = NoSym

> Do While
&SEWARD
&SCF
&SLAPAF

> End Do

The basic input in Listing 1 will perform an RS-RFO optimization, for an RVO simply add
Kriging below &SLAPAF. For a constrained optimization with either method, add the fol-
lowing to the &GATEWAY block:

Constraints
a = Angle H2 O1 H3

Values
a = 170 degrees

End of constraints

This defines a single constraint, named a, as the H–O–H angle, and we request that its value
must be 170 degrees when converged.

Once these optimizations are run successfully, you should find in the output near the end
(before a &LAST_ENERGY block that computes the energy for the converged structure) a table
similar to Listing 2. In the RVO case, the Geom Update column should say RVO n, with n
being the number of microiterations required, instead of RS-RFO, and the Hessian Update
column should always be None.
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Listing 2: Part of the OpenMolcas output for the RS-RFO optimization of H2O.

************************************************************************************************************

* Energy Statistics for Geometry Optimization *

************************************************************************************************************

Energy Grad Grad Step Estimated Geom Hessian

Iter Energy Change Norm Max Element Max Element Final Energy Update Update Index

1 -75.83687495 0.00000000 0.289466 -0.190847 nrc001 -0.297386* nrc001 -75.86560626 RS-RFO None 0

2 -75.89492441 -0.05804946 0.291155 -0.193396 nrc001 -0.298178* nrc001 -75.92373832 RS-RFO BFGS 0

3 -75.95096824 -0.05604384 0.266255 -0.178482 nrc001 -0.299548* nrc001 -75.97780593 RS-RFO BFGS 0

4 -75.99863829 -0.04767005 0.197909 -0.131147 nrc001 -0.462988 nrc001 -76.02947166 RS-RFO BFGS 0

5 -76.02562660 -0.02698831 0.058099 -0.035965 nrc002 -0.057691 nrc002 -76.02733220 RS-RFO BFGS 0

6 -76.02699014 -0.00136354 0.006461 -0.006394 nrc003 -0.020427 nrc003 -76.02705073 RS-RFO BFGS 0

7 -76.02705328 -0.00006315 0.000394 0.000220 nrc002 -0.001164 nrc003 -76.02705350 RS-RFO BFGS 0

+------------------------------+-------------------------------+

+ Cartesian Displacements + Gradient in internals +

+ Value Threshold Converged? + Value Threshold Converged? +

+-----+------------------------------+-------------------------------+

+ RMS + 7.9653E-04 1.2000E-03 Yes + 2.7882E-04 3.0000E-04 Yes +

+-----+------------------------------+-------------------------------+

+ Max + 8.1205E-04 1.8000E-03 Yes + 2.1978E-04 4.5000E-04 Yes +

+-----+------------------------------+-------------------------------+

Geometry is converged in 7 iterations to a Minimum Structure



If we take the time to compute the energies of H2O for a number of structures covering a
range of angles and distance, we can visualize the PES (at this level of theory, i.e.,
HF/cc-pVDZ) and the behavior of the different optimizations. This is presented in the top
row of Fig. 8. For reproducing the figures you would need to compute single-point energies
for structures in a 20� 20 grid of bond lengths and angles in order to obtain the PES contours,
but these are not essential for the example. The lines showing the optimization progress can
be obtained from the output of the optimizations. We observe that the two methods proceed
very similarly for the unconstrained optimization (left panel), although RVO is able to take
larger steps at the beginning, so it reaches the vicinity of the minimum earlier. The same hap-
pens for the constrained optimization (right panel), but it seems also that the path followed by
the RS-RFO optimization is somewhat more erratic or oscillatory; in the case of RVO these
oscillations would mostly be “hidden” in the microiterations.

The actual surrogate models used during the optimization are not explicitly provided in
the output of OpenMolcas, but with some digging and modifications in the source code, it
is possible to obtain all necessary information. (This part requires some familiarity with
the OpenMolcas source code and methods, and it is done here only for illustration purposes.
You could try to reproduce it if you feel adventurous.) The resulting models are displayed in
the middle (RFOmodel) and bottom (GEKmodel used in RVO) rows of Fig. 8. The left panels
show the surrogate models at the end of the unconstrained optimization, the right panels are
for the constrained optimization. When compared with the actual PES in the top row, it is
clear that the GEK model is able to capture much better general shape, and can give a good
approximation for the minimum even when that area was not explored (bottom right panel).
Nevertheless, it should be kept in mind that the purpose of these surrogate models is only to
provide a local approximation to the surface near the target structure and not to globally fit
the surface. For a global representation a more adequate sampling would have to be used.

Transition state optimization (CH32CH5O$CH25CH2OH)

In this last example, we will locate the transition state for the keto-enol tautomerism of
ethanal (acetaldehyde) and ethenol (vinyl alcohol). This transition state is represented by a
first-order saddle point on the PES. The molecular system has seven atoms, so the total num-
ber of internal degrees of freedom is 15, and representing the full PES would require a
16-dimensional space. Since this is not feasible, we will not attempt it, and instead of
representing only projections or slices, we will simply omit the PES and focus on simpler
properties.

Locating saddle points is a significantly harder task than locating minima or maxima, and
there are several methods and strategies available. Here we will use a technique that com-
bines the constrained optimizations of PCO [36, 37] with the saddle-point homing of
I-RFO [9]. The idea is to start with a constrained optimization to guide the structure toward
the region where we believe a saddle point may exist and, once a surrogate model with the
right curvature is found, the constrains are lifted and a “normal” saddle point optimization
proceeds. In designing the initial constraints some amount of knowledge, luck and trial and
error (what is usually called “chemical intuition”) is often involved.
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(a) (b)

(c) (d)

(e) (f)

FIG. 8 Top row: PES and optimization results for the H2O example. The square surrounds the starting structure, the
circlemarks theminimumof the PES.Middle row: Surrogate RFOmodel after convergence. Bottom row: Surrogate GEK
model after convergence. The dashed contours represent the energy uncertainty for 95% confidence (values of 1, 2, and
5 times 10n Eh, for n ¼ �3, �2, �1). The crosses in the middle and bottom rows mark the data points that are used for
defining the model.
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An input example is given in Listing 3. Apart from trivial changes, like the different num-
ber and type of atoms, and the use of DFTmethod (KSDFT = B3LYP) instead ofHartree-Fock,
the difference with the minimum optimization of Listing 1 is the FindTS, and
TSConstraints keywords in &SLAPAF. The former enables the technique discussed earlier,
and the latter specifies the constraints that will be active during the initial part of the process.
In this case, since the reaction (starting from the keto) involves forming a new O–H bond and
breaking a C–H bond, we specify distances that correspond to an almost formed O–H bond
and a rather broken C–H bond, respectively.

Listing 3: Basic input for TS optimization with RVO and OpenMolcas.

&GATEWAY
Coord = 7

C 0.96431771 -0.08453257 -0.00253431
C 2.47833224 -0.05823981 0.03899534
O 3.12403979 -0.20367373 1.04991836
H 0.57334700 0.05878500 -1.02049162
H 0.56720058 0.70514970 0.65700421
H 0.60388459 -1.04683942 0.39754191
H 2.99032520 0.10870718 -0.94642421

Basis = cc-pVDZ
Group = NoSym

> Do While
&SEWARD
&SCF

KSDFT = B3LYP
&SLAPAF

Kriging
FindTS
TSConstraints

b1 = Bond O3 H5
b2 = Bond C1 H5

Values
b1 = 1.2 angstroms
b2 = 1.7 angstroms

End of TSConstraints
> End Do

If we run this calculation, we should obtain a converged structure for the saddle point,
displayed in Fig. 9. We can compare the optimization progress with the RVO method and
with the conventional RS-I-RFO method (with and without the Kriging keyword, respec-
tively), and this is shown in Fig. 10. Again we see that RVO allows for a faster change toward
satisfying the constraints (thicker lines), and also a faster approach to convergence, reducing
the total number of iterations to one-third (14 vs. 21).
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FIG. 9 Molecular structures for the
C2H4O example. Left: keto minimum.
Right: optimized transition state.

(a)

(b)

FIG. 10 Evolution of energy and gradient during the TS example optimization. Top: RS-I-RFO. Bottom: RVO. The
thicker lines indicate the iterations where the guiding constraints are active.



It is worth reminding that the specified constraints are, for a successful TS optimization,
never actually satisfied. At the point when they are turned off (iterations 4 and 5), the distance
values are 2.07 and 1.34 Å with RS-I-RFO, and 1.81 and 1.45 Å with RVO (compare with the
values in Listing 3). At the final TS structure, the respective distances are 1.30 and 1.51 Å.

Conclusions and outlook

In this chapter, we have presented the advancement of ML technology, especially GPR, in
the field of molecular structure optimization. The initial driving force behind this was the
need to replace expensive ab initio methods in the simulations of molecular dynamics or scat-
tering processes. In this respect, both NN and kernel methods have been introduced and
proven to be indispensable. In particular, it has been demonstrated that the GPR
approach—which can learn as it goes and also through the benefits of an analytic expression
of the expected dispersion—can guide a procedure toward optimal learning for the purpose
ofmolecular structure optimizationwith as few data points as possible. In that respect, GPR is
the optimal surrogate model for accurate local representations of the PES while optimizing
molecular structures. Works over the last few years have explored this and the results have
been impressive. The key to success has been the selection of coordinates in which the sur-
rogate model is translational and rotational invariant, exploitation of the benefits of access
to the estimated variance, individual characteristic length scales for each coordinate, and
combining heuristics of the estimated Hessian into the ML procedure. The RVO implemen-
tation in OpenMolcas has all these qualities, where the later point is achieved by setting the
characteristic length scale in a procedure, ignoring standard protocols to maximize the like-
lihood, in order for single-point GPR Hessian to reproduce an approximative guessed Hes-
sian. The new procedure has aced standard restricted-step second-order quasi-Newton
optimization procedures in equilibrium and transition state optimization, in optimizations
in association with geometrical constraints, and in the computation of minimum reaction
paths. Developments toward optimization with nongeometrical constraints as in intersystem
crossings and conical intersections are on their way. Preliminary results show expected su-
perior performance for the case of intersystem crossings, the latter is a bit more problematic.
The possible reason could be the partial ambiguity in a unique and consistent way to present
the branching space that optimal learning can be reached in few iterations. Despite these
problems there is no reason to expect anything else than success. Considering that GPR only
has been developed for molecular structure calculations over the last few years and that it
already outperforms establishedmethods, suggests that theremust bemore development po-
tential. Further developments of GEK should be considered. In particular, the poor scaling
with the number of degrees of freedom needs to be addressed. This bottleneck should be re-
solved in order to achieve these very impressive efficiency improvements in higher-
dimensional problems such as macromolecular systems or the optimization of wave function
parameters.
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Johansson, S. Keller, S. Knecht, G. Kova�cevi�c, E. K€allman, G. Li Manni, M. Lundberg, Y. Ma, S. Mai, J.P.
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