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1. INTRODUCTION

In the last decades the search for environmentally friendlier solvents [1] has
been accompanied on the theoretical side by a renewed interest in the
development of methods oriented to understanding and predicting how
the structure, properties, and reactivity of molecules are affected by the
presence of a surrounding medium [2], with the hope that this knowledge
will serve as a guide in the development of new solvents. In contrast to the
pioneering works of Born [3], Kirkwood [4], Onsager [5], and so on, which
were based on a classical description of the solute, the new methods use
quantum mechanics (QM), which permits a more detailed description of the
changes that the solute molecule suffers during the solvation process. The
high level of calculation and accuracy that has been achieved in the quan-
tum description of molecules and processes in vacuo is widely known;
consequently, an additional objective of current solvent theories is to
achieve a similar level for molecules and processes in solution. From a
practical point of view, the ultimate goal is to have available effective
methods that permit to calculate the geometry and energy of minima,
saddle points, conical intersections (CIs), and so on, of molecules in solution
and that include the contribution of dynamical electron correlation or the
possible multiconfigurational character of the solute wave function.

The medium that surrounds the solute can be of diverse natures: a solid,
a liquid, a glassy solid, a liquid drop, a membrane, or even an enzyme;
however, the vast majority of biological or chemical transformations takes
place in the presence of a solvent. Because of this, most of the examples
presented here are referred to systems and processes in the presence of a
liquid solvent, even if many of the ideas developed could be easily applied
to other media.

The solvent can have very different effects on the solute molecules [6],
it can modify the frequency and intensity of the solute spectral bands, the
thermodynamics and kinetics of chemical reactions, the strength of mole-
cular interactions or the fate of solute excited states. A change of solvent can
drastically alter the behavior of a chemical system, and the choice of a
proper solvent is one of the first decisions that a chemist must take when
facing a spectroscopic, kinetic, or thermodynamic problem. For all these
reasons, it is very interesting to have theoretical methods that can guide
chemists in their choices. Unfortunately, the theoretical study of solvent
effects is quite complicated, since the presence of the solvent introduces
additional difficulties with respect to the study of analogous problems in
gas phase. Among these difficulties, we can remark the following:

(1) Firstly, the great number of molecules involved in the description of
bulk solvent polarization effects. Molecules placed at long distances
have a nonnegligible effect on the solute properties. In general, in the
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study of solvent effects, and depending on the type of solute�solvent
interactions involved, it is necessary to include several solvent shells in
the calculations.

(2) Secondly, the possible presence of specific interactions, mainly
hydrogen bonds (HBs), between the solute and the solvent molecules
located in the first solvation shell. The correct description of these
interactions makes the use of microscopic solvent models compulsory.

(3) Finally, in solution there are a great number of solute�solvent
configurations that are thermally accessible. Different solute molecules
will have different environments and, consequently, slightly different
properties. To obtain statistically significant results, it is necessary to
include hundreds or thousands of solute�solvent configurations.

An additional complication comes from the fact that, in solution, the rele-
vant energy to consider is the free energy and we must hence have at our
disposal methods that permit the calculation of this quantity in an effective
and computationally feasible way.

All these complications, large number of solvent molecules, possible
existence of specific interactions, great number of solvent configurations,
the necessity of determining free energy differences, and so on, have as a
consequence a very large computational cost associated to the calculation of
solvent effects. Along the years, researchers have developed different stra-
tegies to reduce the computational cost while trying to keep the accuracy of
the calculations at an acceptable level. One of the most successful strategies
has been the introduction of the mean field approximation (MFA) [7,8] that
permits to replace the configurational average of a given solute property
with the value obtained for this property when the solute is affected by an
average solvent perturbation. In the next sections, we treat different aspects
of the practical implementation of the MFA, paying especial attention to a
method developed in our laboratory and that combines the MFA with
molecular dynamics (MD) simulations.

2. THE MEAN FIELD APPROXIMATION

Whereas the increase of computational power in the last decades has
permitted to tackle the study of certain solvent effects using a brute force
strategy, as in ab initio dynamics, its application to most chemical and
biological problems is far from being routine. In ab initio dynamics [9],
one combines the quantum mechanical description of both the solute and
the solvent electron distributions with the classical or quantum description
of the nuclei movements. Consequently, it becomes necessary to solve the
Schrödinger equation of several hundreds of molecules for several
thousands of configurations. The computational cost of this strategy is so
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high that in almost all the studies performed to date, it has been compulsory
to reduce the description level of the wave functions, the number of
molecules, or the number of solvent configurations.

In the search for theoretical methods that facilitate the study of solvent
effects, two main strategies have been followed:

(1) Focused methods. The computational cost associated to the large
number of solvent molecules can be reduced using focused methods;
here, we center our attention on a small part of the system, in general,
the solute or the solute and a reduced number of solvent molecules,
which is described using high-level quantum mechanical methods. The
description of the rest of the system, generally the solvent, is simplified
using for instance dielectric continuum models, Langevin dipoles,
molecular mechanics (MM) force fields, or a combination of them.
Focused methods are valid when there is a clear separation between
the solute and solvent wave functions and they fail when charge
transfer between the solute and the solvent is not negligible. In this
case, the solvent molecules closer to the solute should be included in the
quantum part.

(2) MFA. The computational cost associated to the large number of
thermally accessible solvent configurations, and hence of quantum
calculations to perform, can be reduced using the MFA. In this
approximation, one does not consider the effect of specific
configurations, instead, the solvent perturbation enters into the solute
molecular Hamiltonian in an averaged way.

These two approximations can be used independently or jointly. Thus,
QM/MM [10] or ONIOM-type methods [11] are examples of focused
methods, whereas dielectric continuum [12�14], reference interaction site
model (RISM)�self-consistent field (SCF) [15�17], or averaged solvent elec-
trostatic potential (ASEP)/MD [18�21] methods use simultaneously both
strategies. To our knowledge there are no methods that use exclusively
the MFA.

A measure of the success of the MFA is the great number of solvent
theories where it is explicitly or implicitly used. Table 3.1 displays a classi-
fication of some solvent theories where this approximation is applied.
The various theories differ in the description of the solvent. Thus, if
the solvent is described as a dielectric, we get different continuum theories.
They can, in turn, be classified according to the representation of the solvent
perturbation: monocentric multipole [14], multicentric monopole [13,22,23],
effective charges [12,24], and so on. Other descriptions of the solvent are
also possible: as a conductor [25,26], using Langevin dipoles [27], or MM
force fields. In the latter case, the solvent structure can be obtained using
RISM theory [15�17], MD [18�21,28,29], or Monte Carlo simulations [30]. In
the model proposed in our laboratory, named ASEP/MD, the solvent
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structure is obtained from MD simulations and the solvent perturbation is
described using potential fitted charges.

The great advantage of the MFA, and what partly explains its success,
is that it permits to reduce the number of quantum calculations from
several thousands to a single quantum calculation. The price that one
must pay is the complete neglect of the correlation energy associated
with the response of the solute charge distribution to the instantaneous
changes in the solvent structure as a consequence of thermal agitation.
Obviously, the MFA will be valid only if the contribution of this energy,
known as Stark component [31,32], to the total solute�solvent interaction
energy remains negligible. It has been shown, both theoretically [20] and
experimentally [33], that this is usually the case. A recent study [34] of the
errors introduced by the MFA in the calculation of free energy profiles of
SN2 Menshutkin reactions has concluded that these are lower than
0.5 kcal/mol.

3. THE ASEP/MD METHOD

Any theoretical method devoted to the study of solvent effects and intend-
ing to be of application to chemical problems of general interest must
provide solution to, at least, the following problems: (1) the description of
the mutual polarization of the solute and the solvent, (2) the location of
critical points on free energy surfaces, and (3) the calculation of free energy
differences between different solute�solvent geometries. In the following,
we will show how ASEP/MD solves each one of these problems.

Table 3.1 Classification of some of the most commonly used solvent theories that use the

mean field approximation

Conductor Dielectric Langevin
dipoles

Molecular
mechanics

RISM MD

Monopole
multicentric

SMx RISM–SCF

Multipole
monocentric

Rivail, Mikkelsen

No multipole COSMO PCM Warshel
3D-RISM–
SCF

ASEP/
MD
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3.1. The mutual solute–solvent polarization

The ASEP/MDmethod is a focusedmethod that makes use of the MFA. Since
the solute is described quantum mechanically and the solvent by using MM
force fields, it could also be classified into the QM/MM methods, more
specifically, as a sequential QM/MM method [35] where QM and MD calcu-
lations are performed alternately and not simultaneously. As usual in focused
methods [24], the ASEP/MD Hamiltonian is partitioned into three terms

Ĥ ¼ ĤQM þ Ĥclass þ Ĥint; ð1Þ
corresponding to the quantum part, ĤQM, the classical part, Ĥclass, and the
interaction between them, Ĥint.

The energy and the wave function of the solvated solute molecule are
obtained by solving the effective Schrödinger equation:�

ĤQM þ Ĥint

�
jC� ¼ EjC�

: ð2Þ

In general, in QM/MM methods this equation is solved for each solute–
solvent configuration, which means several hundreds or thousands of
times. The final value of the energy (or any other property) is calculated
by averaging over all considered configurations.

From a computational point of view, it is convenient to split the interac-
tion term into two components associated to the electrostatic and van der
Waals contributions:

Ĥint ¼ Ĥ
elect

int þ Ĥ
vdw

int : ð3Þ

In many cases, it is supposed that Ĥ
vdw

int has little effect on the solute wave
function and therefore it is usual to represent it through a classical potential
that depends only on the solute–solvent nuclear coordinates. Obviously, it
will contribute to the final value of the energy, and energy derivatives.

In this point the MFA is introduced. So, we define the MFA electrostatic

interaction term,
D
Ĥ

elect

int

E
, as follows [7,8,18]:

D
Ĥ

elect

int

E
¼

Z
dr � �̂ � �VSðrÞ

�
; ð4Þ

where �̂ is the solute charge density operator, and
�
VS(r)

�
, named ASEP, is

the average electrostatic potential generated by the solvent at the position
r. The brackets denote a statistical average over configurations in
equilibrium.

The MFA energy is obtained by solving the following equation:

�
ĤQM þ �

Ĥint

��jC� ¼ �EjC�
: ð5Þ
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Note, that in the MFA we replace the average value of the energies obtained
from Eq. (2) with the energy obtained in presence of the average solvent
perturbation, that is,

�
E
�� Ē.

Different solvation methods can be obtained depending on the way the
term

�
VS(r)

�
is calculated. For instance, in dielectric continuum models�

VS(r)
�
is a function of the solvent dielectric constant and of the geometric

parameters that define the molecular cavity where the solute molecule is
placed [12]. In ASEP/MD, the information necessary to calculate

�
VS(r)

�
is

obtained from MD simulations. In this way,
�
VS(r)

�
incorporates informa-

tion about the microscopic structure of the solvent around the solute,
furthermore, specific solute–solvent interactions can be properly accounted
for.

The basic scheme of the ASEP/MDmethod is very simple, see Figure 3.1.
One begins by performing a quantum calculation of the solute molecule in
gas phase. From this one can obtain the solute charge distribution that is
introduced as input into an MD simulation. The rest of the simulation
parameters can be obtained from suitable force fields. From the MD calcula-
tion, one gets the solvent structure, which permits to calculate the ASEP by
averaging over the solvent configurations, the ASEP is then introduced into
the solute molecular Hamiltonian. By solving the associated Schrödinger
equation (5), we get the solute wave function but now perturbed by the
solvent. The new solute charge distribution is again introduced into another
MD simulation. The procedure is repeated until convergence is attained,

H0Ψ0
 = EΨ0

{q0}

Molecular dynamics

{q} Averaged potential, V

[H + V]Ψ = EΨ

Energy and
solute properties

Figure 3.1 Flow chart of the ASEP/MD method.
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something that occurs in a few cycles (less than ten, in general). Given that
in our method quantum calculations and MD simulations are not simulta-
neous, there is a certain freedom to decide which configurations to include
in the calculation of the ASEP. So, to decrease the statistical correlation
between the selected configurations, we include only configurations sepa-
rated by 0.05 ps or more. It is also important to remember that only the
electrostatic term enters into the electron Hamiltonian.

The information that we get at the end of the ASEP/MD cycle is the
energy, geometry, and wave function of the solute molecule polarized by
the solvent and the solvent structure around it. Figure 3.2 displays how the
solute charge distribution, which is represented by its dipole moment, and
the solvent structure become mutually equilibrated during the ASEP/MD
procedure. At the same time, the free energy of the system decreases until
the system reaches the equilibrium and then it begins to fluctuate. The size
of the fluctuations is a consequence of the finite size of the simulations.

One important point to clarify is the way in which the ASEP is calculated
and introduced into the solute molecular Hamiltonian. We have checked
several possibilities. The electrostatic solvent perturbation can be described
through multipole expansions or using a set of point charges. In this last
case, the charges can be determined in several ways. In general, especially
when solute–solvent HBs are present, a representation using point charges
is more adequate because the use of multipole expansions can introduce
appreciable errors in the solute–solvent interaction energy. The simplest
way to get the charges is to use for them the same values and positions
used during the MD and then to divide the value of each charge by the
number of solvent configurations included in the ASEP. The problem then is
that the number of charges increases very quickly as the number of solvent
molecules or system configurations gets higher. This approximation has
been used, for instance, by Coutinho et al. [36]. To keep the number of
charges tractable, we follow a somewhat more elaborated procedure: we
consider explicitly only those charges associated to molecules that belong to
the first solvation shell, the effect of the remaining solvent molecules is
described by using potential-fitted charges.

The set of charges {qi} is obtained in three steps. The details are as follows
[21]:

(1) Each selected configuration is translated and rotated in such a way that
all of the solvent coordinates can be referred to a reference system
centered on the center of mass of the solute with the coordinate axes
parallel to its principal axes of inertia. This procedure is needed to get
all the charges’ coordinates referring to the same coordinate system.

(2) Next, one explicitly includes in the ASEP the charges belonging to
solvent molecules that, in any of the MD configurations selected, lie
inside a sphere of a given radius and that includes at least the first
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solvation shell. The value of every charge is then divided by the
number of solvent configurations included in the determination of the
ASEP. Next, to reduce the number of charges, one adds together all the
charges lying less than a certain distance from each other, this distance
is generally taken as 0.5 a0.

(3) Finally, one includes a second set of charges representing the effect of
the solvent molecules lying outside the first solvation shell. These
charges are obtained by a least squares fit to the values of the ASEP
originated by the outer solvent molecules in a three-dimensional grid
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Figure 3.2 Mutual equilibration of solute and solvent during an ASEP calculation of
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defined inside the volume occupied by the solute molecule. The solute
volume is defined through a set of interlocking spheres of radius f�Rvdw,
where f is a numerical factor close to one, and Rvdw are the Bondi radii of
the solute atoms. These charges are obtained in such a way that they
reproduce the electrostatic potential generated by the outer solvent
molecules in the volume occupied by the solute.

The total number of charges introduced into the perturbation Hamiltonian
varies generally between 25 000 and 35 000 depending on the size of the
system.

3.2. Location of critical points on free energy surfaces

ASEP/MD uses a variant of the free energy gradient method [37–40] for
the calculation of the gradients that drive the optimization process.
In this method, the average force,

�
F
�
, and Hessian,

�
G
�
, felt by the

solute atoms are used to optimize the geometry. The average force is
defined as the derivative of the free energy (with a minus sign), and
can be calculated as the average value of the potential energy deriva-
tive. The average Hessian takes a more complicated form, see below. In
the original proposal of Okuyama-Yoshida et al. [37], these average
values were obtained from QM/MM calculations where the solute
molecule had a fixed geometry. The main advantage of this method is
that it permits to obtain both stable and transition states. The main
drawback is that the computational cost of calculating

�
F
�
and

�
G
�
is

usually high. However, as we will show below, it is possible to reduce
this cost by using again the MFA in the calculation of the gradient and
Hessian.

The basis of the free energy gradient method is the following: Let
G=�kT ln ZNVT be the Helmholtz free energy of a system formed by one
solute molecule and N–1 solvent molecules and ZNVT the quasi-classical
canonical partition function. The force on the free energy surface (the force
felt by the solute molecule) is

�
FðRÞ� ¼ � @GðRÞ

@R
¼ �

D @E

@R

E
¼ �

D @EQM

@R

E
�
D @Eint

@R

E
; ð6Þ

R being the nuclear coordinates of the solute, E the energy obtained as
the solution of the Schrödinger equation (2), and where we have
assumed that Eclass does not explicitly depend on the solute nuclear
coordinates R. As before, the brackets denote a configurational average.
Note that E incorporates both intra-, EQM, and intermolecular, Eint,
contributions.
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In the same way the Hessian reads

�
GðR;R0Þ� ¼ D @2E

@R@R0
E
� �

D @E

@R

@Et

@R0
E
þ �

D @E

@R

ED @E

@R

E
t

¼
D @2E

@R@R0
E
� �

h�
F2
�� �

�
F
�2i

;

ð7Þ

where the superscript t denotes the transposition and � = 1/kT. The last
term in Eq. (7) is related to the thermal fluctuations of the force.

As for the energy, it is convenient to split the interaction term into
two components associated to the electrostatic and van der Waals
contributions:

�
FðRÞ� ¼ �

D @EQM

@R

E
�
D @Eelect

int

@R

E
�
D @Evdw

int

@R

E
: ð8Þ

Next, we use the MFA to simplify the gradient and Hessian expres-
sions. Given that our final aim is to reduce the number of quantum
calculations, this approximation is used for the two first terms of the
R.H.S. of Eq. (8), but not for the van der Waals term that does not
depend on the electron coordinates. Thus, we replace the configurational
average of the derivatives with the derivative of the MFA energies
obtained with Eq. (5), furthermore we neglect the force fluctuation
term in Eq. (7) (since the Hessian is used only to accelerate the optimi-
zation procedure, this approximation has no effect on the optimized
geometries but it can affect the harmonic frequencies evaluation). The
validity of these approximations has been checked elsewhere [41]. The
force now reads as follows:

�
FðRÞ� ¼ � @�EQM

@R
� @�E

elect
int

@R
�
D @E vdw

int

@R

E
; ð9Þ

with an analogous expression for the Hessian:

�
GðR;R0Þ� ¼ � @2�EQM

@R@R0 �
@2�E

elect
int

@R@R0
�
D @2E vdw

int

@R@R0
E
: ð10Þ

The advantages of the introduction of the MFA in the calculation of
gradients and Hessians are evident, it permits to reduce the computational
cost of these quantities in solution; in fact, the cost is similar to that of an
isolated molecule.
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3.3. Calculation of free energy differences

For most practical applications, one is interested in the free energy (FE)
difference between different structures, states, or species, such as the
ground and excited state in a photophysical process, and reactants, pro-
ducts, and transition state in a chemical reaction. Within the ASEP/MD
methodology, the free energy difference in solution between two given
states is approximated as follows [42]:

DGs ¼ DEsolute þ DGint þ DZPEsolute; ð11Þ
where DEsolute is the internal energy difference between the two solute states
at QM level, DGint is the difference in the solute–solvent interaction free
energy, and DZPEsolute includes the difference in zero-point energy as well
as entropy and thermal contributions to the solute QM free energy.
Although formally this equation takes the same form as in the QM-FE
approach of Jorgensen [43], the meaning of the DE term is different. First,
because the geometry of the two species involved are optimized in solution.
Second, because the internal energy and charge distribution of the solute are
determined in the presence of the solvent.

In Eq. (11), the internal energy difference between the two QM states is
defined as

DEsolute ¼ EB �EA ¼ �
CBjĤ0

BjCB

�� �
CAjĤ0

AjCA

�
; ð12Þ

where, Ĥ
0

X is the in vacuo Hamiltonian for the state X, and CX is the
electronic wave function of the state X in solution, that is, calculated in the
presence of the perturbation caused by the solvent. CX is obtained by
solving the effective Schrödinger equation, Eq. (5). EB and EA are calculated
using the geometries optimized in solution and do not include the solute–
solvent interaction energy.

The DGint term is calculated with the free energy perturbation (FEP)
method [44], and takes into account the ensemble of thermally accessible
solute–solvent configurations. To obtain DGint, the solute geometry, charges,
and Lennard-Jones parameters are considered as a function of the perturba-
tion parameter �: when � = 0 they correspond to the initial state and when
� = 1 to the final state. A series of intermediate arbitrary states are defined
by linear interpolation of the solute properties and for each of them a fully
classical MD simulation is performed. The free energy difference is
calculated from these simulations in the usual FEP way. It must be noted
that, although geometries and charges for the initial and final states of the
solute are calculated quantum mechanically with the ASEP/MD method,
the DGint term is obtained through classical simulations. This approximation
does not introduce significant errors if a sufficiently good solute charge
distribution is used and it permits an important saving in computational
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effort. A more detailed discussion of this point can be found in Ref. [45]. For
a comparison of several strategies based on the MFA for the calculation of
solvation free energies in solution and protein environment, see Ref. [46].

Finally, the DZPEsolute term is calculated in the same way as usually done
for in vacuo calculations, using the harmonic approximation for vibrational
modes. The only specific consideration in solution is that the molecular
geometry and vibrational frequencies of the solute are obtained in solution,
using the approximate in solution Hessian matrix. Rotational and transla-
tional degrees of freedom are transformed into low-frequency vibrational
modes in solution, and must be treated accordingly.

4. VALIDITY OF THE MEAN FIELD APPROXIMATION

The main source of error associated to the use of the MFA is the complete
neglect of the Stark component of the solute�solvent interaction energy. In
this section, we present some results that permit to estimate the magnitude
of this error in several quantities. More specifically, we discuss three types
of errors: errors on the energy and dipole moment of molecules in the
ground state, errors on the solvent shift in electron transitions, and errors
on the energy gradients.

In Table 3.2, the values for the energy and dipole moment of several
alcohols and carbonyl compounds in water solution calculated with the
MFA or as an average of QM calculations are compared [20].

�
A
�
represents

the value of the A property calculated as the mean value of 100 quantum
calculations; AMFA represents the value obtained when the MFA is used,
and has been obtained by calculating the ASEP with the same 100 solvent
configurations and performing only one quantum calculation. WStark is the

Table 3.2 Interaction energy, solvent Stark component (in kcal/mol), and dipole

moments (in debyes) in the liquid state calculated as a mean value
�
E
�
or with the mean

field approximation EMFA

�
E
�

EMFA WStark

�
�
�

�MFA

�
�
�
–�MFA

CASSCF
Formaldehyde –9.2 –8.8 0.4 (4.3%) 2.99 2.99 0.00 (0.0%)
Acetaldehyde –8.9 –8.5 0.4 (4.5%) 3.46 3.46 0.00 (0.0%)
Acetone –21.9 –21.1 0.8 (3.6 %) 4.48 4.47 0.01 (0.2%)

MP2
Methanol –18.3 –17.9 0.4 (2.2%) 2.46 2.45 0.01 (0.4%)
Ethanol –15.8 –15.4 0.4 (2.5%) 2.27 2.25 0.02 (0.9%)
Propanol –13.7 –13.5 0.2 (1.5%) 2.15 2.13 0.02 (0.9%)
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difference between these two quantities for the energy. As we can seeWStark

is in all cases lower than 5% and the errors introduced by the MFA in the
dipole moments are lower than 1%. Percentually, the errors are very similar
along each series of molecules. The errors are somewhat higher in the
carbonyls because of their larger polarizabilities.

For the determination of the error introduced by the MFA in the
calculation of the solvent shift of electron transitions, we must compare
the transition energy when the MFA is used and when it is not. In
Table 3.3, we compared the errors introduced by the MFA in the calcula-
tion of the transition energy in several chromophores and different sol-
vents: water, methanol, and cyclohexane. In this study electronic
transitions to the first (n�p�) excited state were studied for acrolein and
formaldehyde, whereas (p�p�) transitions were studied for p-difluoroben-
zene (p-DFB) and trans-difluoroethene (trans-DFE). A practical coincidence
is observed between the in solution transition energies obtained using
the MFA and those achieved as the average of the transition energies
resulting from 100 quantum calculations corresponding to as many solvent
configurations. A similar trend can be noted in solvent shift values,

Table 3.3 Transition energies in vacuo, DE0, and in solution calculated as a mean value�
DEd

�
or with the mean field approximation DEdMFA. � stands for the solvent shift. WStarrk is

the solvent Stark component of the solute–solvent interaction energy. All the quantities in

kcal/mol

DE0
�
DEd

�
DEd

MFA

�
�
�

�MFA WStark(�)

Water
Acroleine;
CASPT2(6,5)//CASSCF(6,5)

83.08 88.26 88.60 5.18 5.51 0.34

Formaldehyde;
CASPT2(4,2)//CASSCF(4,2)

92.30 95.79 95.73 3.49 3.43 –0.06

p-DFB;
CASPT2(6,6)//MP2

110.02 111.18 111.17 1.16 1.14 –0.02

trans-DFE;
CASPT2(2,2)//MP2

190.62 192.34 189.68 1.72 1.67 –0.05

Methanol
p-DFB;
CASPT2(6,6)//MP2

110.02 110.66 110.75 0.64 0.72 0.08

trans-DFE;
CASPT2(2,2)//MP2

190.62 191.60 191.42 0.98 0.80 –0.18

Cyclohexane
p-DFB; CASPT2(6,6)//MP2 110.02 110.22 110.18 0.16 0.19 –0.03
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calculated as the difference of electronic transition energies obtained in
vacuo and in solution. Consequently, and as a first conclusion, we can state
the absence of solvent Stark effect and the validity of the MFA in the study
of the solvent effect on the position of the absorption bands in electronic
spectra.

Finally, in Table 3.4 we compare the values of the different components
of the free energy gradient for a molecule of formamide in aqueous solution
[41]. The error introduced by the MFA in the gradient root mean square
(RMS) is close to 1%, very similar to the errors introduced in the energy or in
dipole moment. This implies that the MFA can provide good optimized
geometries of molecules in solution. In the gradient we have included only
the electrostatic component of the solute�solvent interaction energy because
the MFA affects only this component, the contribution of the van der Waals
component to the gradient is evaluated directly from the MD simulations
(vide supra).

Table 3.4 Cartesian gradient of the free energy (in 10–3 Eh/a0) of a molecule of forma-

mide in aqueous solution. Only the electrostatic contribution is included

Mean of 1000
configurations

Average
configuration

Difference

N1 x 12.914 12.827 0.087
y 3.858 3.831 0.027
z 0.084 0.085 –0.001

H2 x –3.365 –3.132 –0.233
y 3.049 2.928 0.121
z 0.053 0.049 0.004

H3 x –1.116 –1.081 –0.035
y –5.347 –5.081 –0.266
z –0.006 –0.004 –0.002

C4 x –26.864 –26.816 –0.048
y 5.473 5.487 –0.014
z –0.002 –0.010 0.008

O5 x 18.255 17.862 0.393
y –10.052 –9.788 –0.264
z –0.041 –0.026 –0.015

H6 x 1.567 1.571 –0.004
y –2.136 –2.240 0.104

z –0.004 0.002 –0.006

r.m.s. 8.898 8.807 0.091
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5. EXAMPLES OF APPLICATIONS

In this section we present some examples of application of ASEP/MD. These
examples comprise solvent effects on conformational and configurational
equilibria, chemical kinetics, UV/Vis spectra and nonradiative de-excitation
of excited states. In all of them, the use of the MFA permits to reduce the
computational cost associated to the great number of thermally accessible
solvent configurations; this makes it possible to increase the description level
of the solute and the use of quantum methods similar to those commonly
used in gas-phase calculations: density functional theory (DFT), Møller-
Plesset perturbation theory (MP2), complete active space self consistent
field (CASSCF), complete active space perturbation theory (CASPT2), and
so on. Along this discussion, the results obtained with ASEP/MD will be
compared with those obtained with other methods. The final aim is to estab-
lish the validity of the MFA and to determine the possible importance of
solute�solvent specific interactions on the calculated properties.

5.1. Conformational and configurational equilibria

5.1.1. Anomeric effect in xylopyranose and glucopyranose
The anomeric effect describes the axial preference for an electronegative
substituent on the pyranose ring adjacent to the ring oxygen. This effect
makes the b-anomer—with all the hydroxyl groups in the equatorial
orientation with respect to the ring (in D-glucopyranose)—less stable than
the a-anomer—which differs from the b-anomer in the axial orientation of
the hydroxyl group on C1—in vacuo. However, the reverse behavior has
been observed in aqueous solution. So, for instance, in D-glucopyranose in
water solution, the ratio between a- and b-anomers is 36:64. A similar
behavior has been observed in xylopyranose.

In the study of D-xylopyranose [47], the energy and wave functions were
calculated using DFT with the Becke three-parameter Lee–Yang–Parr
(B3LYP) functional [48] and the 6-311GþþG(2d,2p) basis set [49]. For each
anomer, there are several possible arrangements of the hydroxyl groups. In
general, for the isolated molecule, the hydroxyl groups prefer to orient in
such a way as to yield a cooperative hydrogen bonding as efficiently as
possible. The two preferred arrangements of the intramolecular hydrogen
bonds (IHBs) are clockwise or counterclockwise, the counterclockwise
orientation being somewhat more stable. The main results obtained are
displayed in Figure 3.3. For comparison, we also give the results obtained
with the polarizable continuum model (PCM) [12] as implemented in Gaus-
sian 98 [50] and with a scale factor for the radius of each atomic sphere of
1.2. The continuum model erroneously predicts that solvation favors the
a-anomer; in fact, the solvation free energy is 1.1 kcal/mol larger in the
a-anomer than in the b. On the contrary, ASEP/MD, which includes specific

74 I. Fdez. GalvÆn et al.



                     

solute–solvent interactions, predicts the correct trend: in solution the more
stable form is the b-anomer. Given that in vacuo the anomeric effect favors
the a-anomer, the greater stability in solution of the b-anomer must be due
to a more favorable solvent interaction term. The relative stability predicted
by ASEP/MD, 0.6 kcal/mol, agrees very well with the experimental value,
0.4 kcal/mol [51].

The study of the D-glucopyranose molecule [52] is somewhat more
complicated because the hydroxymethyl group can adopt different orienta-
tions (see Figure 3.4) with different values of the dihedral angle

β-D-Xylopyranose

α-D-Xylopyranose

4.46

2.20

0.87

0.0 0.0

SolutionVacuum

2.03 PCM

–0.4

–0.7

Exp.

Figure 3.3 Relative free energies (with counterclockwise a-D-xylopyranose as the

reference) of a- and b-D-xylopyranose, in vacuo and in solution.

αG+ αG– αT

βG+ βG– βT

Figure 3.4 Structures of the different rotamers of a- and b-D-glucopyranose.
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OR�C5�C6�O6. In our study we considered the three most important
rotamers (T, Gþ, G–) of counterclockwise D-glucopyranose, which were
studied in vacuo and in water solution at the B3LYP/6-31þG(d,p) level
and with the ASEP/MD method.

Figure 3.5 shows the relative energies of the six studied conformers of
D-glucopyranose in vacuo and in aqueous solution. The energy of the most
stable conformer in vacuo, aT, is arbitrarily taken as the reference value. The
most significant effect of the solvation of D-glucopyranose is the larger
stabilization of the b-conformers relative to the a ones. As a result,
we found that while in vacuo the a-conformers are more stable than their
b counterparts; in aqueous solution any of the b-conformers is preferred to
any of the a-conformers. The difference in energy in solution between the
most stable b-conformer, bGþ, and the most stable a-conformer, aT, is
0.9 kcal/mol. Experimental evidence [53,54] suggest that the difference in
free energy between a- and b-conformers of D-glucopyranose in aqueous
solution is around 0.4 kcal/mol (a ratio between a- and b-abundances of
36:64). Our results slightly overestimate these differences in energy (we
obtain a ratio between a and b of 20:80), but, given the approximations
made in our study, this result is very encouraging.

In order to gain a deeper insight into the solvation effects, in Figure 3.6
we plot the radial distribution function (RDF) for the distances between the
anomeric oxygen, O1, and the water solvent oxygen, Ow, for the six
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Figure 3.5 Relative free energies (with aT as the reference) of the different rotamers of

a- and b-D-glucopyranose, in vacuo and in solution.
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conformers. Figure 3.6a shows the RDF for the a conformers and Figure 3.6b
for the b-conformers. The main conclusion is that, as we noted above,
solvation is more effective for the b-conformers, which shows a peak (at
around 3.1 Å) that is higher than for the a-conformers. One can therefore
expect the b-conformers to be more stabilized by solvation than the a-
conformers, the solvent molecules being more tightly bonded to the anome-
ric oxygen in the b-conformers. The solvation of the rest of the OH groups of
the pyranose ring hardly depends at all on the type of conformer, and hence
has no influence on the relative stability of the a- and b-forms.

In sum, the most significant effect of the solvation of D-xylopyranose and
D-glucopyranose is the greater stabilization of the b-conformers relative to
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Figure 3.6 O(anomeric)�O(water) RDFs of the different rotamers of a- and
b-D-glucopyranose.
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the a-conformers. The explanation is that the anomeric effect, which makes
a-conformers more stable in the gas phase, is not powerful enough to
compete with the effect of a stronger interaction between the solvent and
the free electron pairs of the anomeric oxygen in the b-conformers than in
the a-conformers, where this interaction is hindered by the rest of the
pyranose ring.

5.1.2. Conformational equilibrium in a tripeptide
In recent years, small peptides have been used as model systems for the
study of the conformational behavior of more complex biomolecules. In an
effort to gain insight on the solvent influence on the structure and stability
of peptides, we undertook the study of the electronic structure, the geo-
metric parameters, and the physicochemical properties of the tripeptide
Cys-Asn-Ser (Figure 3.7) both in gaseous and in acidic aqueous solutions
[55]. The study was performed with ASEP/MD and at the B3LYP/6-311þG
(d) level. The Cys-Asn-Ser tripeptide can form several IHBs that involve
groups of very different nature [56]. It is hence a good model to check the
solvent influence on the geometry and energy of the different groups. We
are especially interested in the study of the IHB formed by the oxygen (O25)
of the side chain of Asn with the two hydrogens (H2 and H19) bonded to the

Figure 3.7 Structure and labeling of the Cys-Asn-Ser tripeptide.
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nitrogens (N1 and N15) of the peptide bonds, because they can provide
stiffness to the main chain of the tripeptide. We named these IHBs as HB1a
(N1�H2�O25) and HB1b (N15�H19�O25), respectively.

In gas phase we found three minima, see Figure 3.8. The two more stable
structures are Vac-2 and Vac-3, the free energy difference between these two
structures is only 0.3 kcal/mol. In both structures, O25 is involved in the
formation of an IHB. Somewhat higher in energy (2 kcal/mol), we find
Vac-1, in this structure the O25 IHB is missing.

Next, we analyzed the in solution results. Figure 3.9 displays the six
more stable structures, for the sake of simplicity other structures at higher
energies have not been included. The structures of Sol-1–Sol-3 conformers
are equivalent to those obtained in vacuo (Vac-1–Vac-3), in the sense that
they are characterized by the same number of IHBs and display a similar
orientation of the side groups. Sol-4–Sol-6 are extended structures without
IHB. The first conclusion is that the number of local minima is greater in
solution than in vacuo. The solvent stabilizes extended structures without
IHB that are not stable in vacuo. These results confirm previous studies on
the relative stability of amino acids and peptides, where it was found that

Vac-1 Vac-2

Vac-3

Figure 3.8 Stable conformations of the tripeptide in vacuo.
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some structures that do not exist in gas phase become stable in solution
because of their ability to form strong intermolecular HBs with water. So, for
instance, in solution, the most stable structures are Sol-1, Sol-5, and Sol-6; in
these three conformers, O25 forms an intermolecular HB with the water
molecules. Higher in energy are Sol-2 and Sol-3, characterized by the pre-
sence of HB1b and HB1a, respectively. Consequently, in solution there is an
equilibrium between several structures, with the structures where O25
forms intermolecular HBs strongly favored.

Another fact to emphasize is that, in solution, the stability order is
reversed with respect to the situation found in vacuo, here the order is
Vac-3> Vac-2> Vac-1 whereas in solution the stability order of the equiva-
lent structures is Sol-1> Sol-2> Sol-3. The study of the different

Sol-1 Sol-2

Sol-3 Sol-4

Sol-5 Sol-6

Figure 3.9 Stable conformations of the tripeptide in solution.
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contributions to the free energy, Table 3.5, permits us to clarify the origin of
the inversion in the differential stability of the conformers when we pass
from gas phase to solution. DG is the sum of two contributions: the internal
energy, DEsolute, and the solvation energy, DGint, as indicated in Eq. (11)
neglecting the DZPEsolute term. It is interesting to note that there exists a
strong negative correlation between the internal energy and the solvation
energy: the less stable the internal structure of the conformer, the greater the
solvation energy. The internal energy is stabilized by the presence of IHBs,
consequently, the most negative values of the internal energy correspond to
those structures with the larger number of IHB (Sol-2 and Sol-3). On the
contrary, the solvation energy is larger in those structures where there is a
better exposure of the polar groups of the peptide to the water molecules,
that is, in those structures in which the tripeptide adopts a more extended
conformation without IHB (Sol-5 and Sol-6). The stability order results from
the interplay of these two factors: internal energy and solvation that, in turn,
are determined by the competition between intra- and intermolecular HBs.

The study of the shape of RDF and of the coordination numbers
also reveals the competition between IHBs and intermolecular HBs, see
Figure 3.10. If one fixes the attention on the O25(tripeptide)�H(water)
RDF, it can be noted that the height of the RDF and the coordination number
decreases as we pass from a conformation with intermolecular HB to one
with intramolecular HB. So, for instance, the O25 coordination number
decreases from 2.5 to 2.2 when one passes from Sol-1 to Sol-2, and to 1.8
in Sol-3. However, the most dramatic effects are displayed by H2 and H19.
In Sol-1, both hydrogen atoms show well-defined peaks at 2 Å in the
H(tripeptide)�O(water) RDFs. In the two cases, the coordination numbers
are close to 1. In Sol-2, H2 displays also a very well-defined peak but the RDF
associated to H19 has completely lost its structure, evidencing the existence
of an IHB between O25 and H19. Something similar is found in Sol-3, in this
case the H19�O(water) RDF displays a very well-defined peak but the
H2�O(water) RDF loses its structure as a consequence of the H2�O25 IHB.

Table 3.5 Free energy difference and its components, in kcal/mol, for the six most stable

minima found in solution

DEsolute DGint DG

Sol-1 –8.0 3.1 –4.9
Sol-2 –11.0 7.4 –3.6
Sol-3 –11.8 9.8 –2.0
Sol-4 0.0 0.0 0.0
Sol-5 4.1 –8.8 –4.7
Sol-6 8.2 –13.0 –4.8
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5.2. Chemical reactions

An example of application of the ASEP/MD methodology to chemical
reactions was the study of the 1,3-proton shift in triazene (N3H3) [57]. The
ASEP/MD method was used to optimize the geometries of the triazene

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6 7 8

r (Å)

R
D

F
 (

O
25

-H
w

)

0.0

0.5

1.0

1.5

2.0

2.5

1 2 3 4 5 6 7 8
r (Å)

R
D

F
 (

H
2−

O
w

)

0.0

0.4

0.8

1.2

1.6

1 2 3 4 5 6 7 8

r (Å)

R
D

F
 (

H
19

−
O

w
)

Figure 3.10 O25�H, H2�O, and H19�O RDFs for the tripeptide in solution. Solid: Sol-1.
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molecule in water, as well as the transition states of two possible reaction
mechanisms: a unimolecular shift (TS1) and a bimolecular reaction aided by
a water molecule (TS2, see Figure 3.11) in aqueous solution. A DFT method
with a BP86 functional [58,59] was used for the quantum calculations with a
triple-zeta basis set. Concerning the structure of the transition states, it was
found that TS2 in solution resembles a N3H4

þ þ OH– ionic pair in solution
more than in gas phase, which accounts for a part of the stabilization of this
transition state in solution (see Table 3.6). While the activation energy for the
unimolecular reaction increases from 32.0 kcal/mol in gas phase to
34.9 kcal/mol in solution, for the bimolecular reaction it decreases from
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Figure 3.11 Scheme of 1,3 proton shift of triazene. Top: unimolecular reaction. Bottom:

bimolecular reaction with the aid of a water molecule.

Table 3.6 Energy barriers (in kcal/mol) of the two activation processes for the 1,3 proton

shift in triazene. See Figure 3.11 for the structures

In vacuo In solution

N3H3 ! TS1 32.03 34.91
N3H3 þ H2O ! TS2 10.07 5.46
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10.1 kcal/mol to 5.5 kcal/mol. Not only the bimolecular path is preferred,
but the preference is much stronger in solution.

As a complementary application, the optimized TS2 structure obtained
in water with the ASEP/MDmethod was used as the initial solute geometry
for trajectory calculations with a standard QM/MM method (DFMM)
[60–62], using the “rare event” approach for the dynamical study of the
bimolecular reaction. Starting with the transition state, 50 different QM/
MM trajectories, with Boltzmann-distributed initial velocities, were run
both forward and backward in time. This allowed us to observe the beha-
vior of the transition state structure in solution and the course of the
reaction. The main conclusions were (1) the hydrogen-bonded complex
(CMP) is maintained before and after the reaction takes place; (2) a transition-
state-like structure, which resembles an ionic pair, is relatively long-lived
(an average life of 85 fs); (3) the calculated transmission coefficient was
0.73, indicative of a good initial representation of the transition state,
which was the aim of the ASEP/MD method, and at the same time of a
nonnegligible influence of dynamical effects and recrossings, as suggested
by the long-lived TS2-like structure.

5.2.1. Electron transitions
In the study of solvent effects on electron spectra, it is very usual to consider
two time scales: a fast one, associated with the motion of the electrons, and a
slow one, related to the nuclear motion. During an electron transition, the
Franck–Condon (FC) principle establishes that the nuclear geometries of the
solute and solvent remain fixed. That means that for an absorption process
the solvent structure will be in equilibrium with the ground-state solute
charge distribution, but not with the solute charge distribution of the excited
state (the contrary is valid for the emission process). However, the response
of the electron distribution of the solvent is in general fast enough to adapt
to the change in the solute charge distribution during the transition. In our
group we have developed a polarizable solvent version [63,64] of the ASEP/
MD method that permits the electronic degrees of freedom of the solvent to
respond instantaneously to the change in the solute charge distribution
during the transition, that is, the electron solvent polarization is always in
equilibrium with the solute charge distribution. To this end an additional
self-consistent process is performed. Using the solvent structure and solute
geometry obtained in the first self-consistent ASEP/MD process, we couple
the quantum mechanical solute and the electron polarization of the solvent.
We assign a molecular polarizability to every solvent molecule, and simul-
taneously, we replace the effective solvent charge distribution used in
the MD simulation with the gas-phase values for the solvent molecule.
The induced dipole moment on each solvent molecule is a function of the
induced dipole moments on the rest of the molecules and of the solute
charge distribution, and hence the electrostatic equation has to be solved
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self-consistently. The process finishes when convergence in the solute and
solvent charge distributions is achieved.

In our method, the solvatochromic or solvent shift of an electron transi-
tion is the sum of several contributions [65] corresponding to the change in
the internal energy of the solute when polarized, the distortion energy of the
solvent, that is, the energy spent in the reorganization of the solvent during
the excitation, and several terms associated to the interactions between the
solute charge distribution, Q, and the permanent, q, and induced, p, charges
in the solvent.

� ¼ Uex �Ug ¼ 1

2
�pq þ �Qq þ 1

2
�Qp þ � solute

dist þ � solvent
dist : ð13Þ

The last term of Eq. (13), the distortion energy of the solvent, vanishes in a
vertical transition where the solvent structure is kept fixed but takes a
nonnull value in adiabatic transitions.

As an example of application of the method, the transition energy of
dimethylaniline (DMA) in several solvents is presented [66]. The geometry
of DMA was optimized at CASSCF(8,7)/6-311G�� level, and the transition
energies calculated with second-order perturbation theory (CASPT2) as
implemented in MOLCAS-6 [67]. The solvents, water, cyclohexane, and
tetrahydrofuran, were represented as rigid molecules with the OPLS-AA
force field. In vacuo, the ground-state dipole moment is 1.33D and 1.66D in
the excited state. When the molecule is introduced into a solvent, it is
expected that the excited state will be more stabilized than the ground
state, consequently the transition energy will decrease and we will have a
red solvent shift. In Figure 3.12 white circles represent the experimental
values. As one can see, the decrease of the transition energy becomes larger
when the solvent polarity increases. Water, however, presents an anoma-
lous behavior. In water, the transition energy increases. We will try to
explain the reasons of this anomalous behavior later. First, we will describe
the prediction of continuum models, blue circles. As we can see, PCM
reproduces the experimental trend in nonprotic solvents, but fails in the
water case. On the contrary, ASEP/MD, red circles, reproduces correctly the
experimental trend, both in protic and nonprotic solvents. The systematic
deviation of our results from the experimental values is due to the neglect of
the contribution of the dispersion component. This component is a function
of the refraction index of the solvent and hence it hardly depends on the
solvent nature (the refraction index varies very little among the different
solvents studied) and its contribution can be eliminated by considering the
differences between solvents instead of the absolute transition energy, see
Figure 3.13. The agreement with the experiment is very good.

Turning to the motives of the anomalous behavior of water, in Figure 3.14
we represent the occupancy map of water oxygen atoms. Because of the
formation of HBs, most of the water molecules concentrate close to the free
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electron pair of the nitrogen atom. There are also high concentrations above
and below the aromatic ring.When themolecule is excited, part of the charge is
transferred from the nitrogen atom to the ring, and the HBs are broken, as a
consequence the solvation energy decreases in the excited state. In reality, this
is only a partial view of the problem. When the solute molecule is placed in
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water, the wagging angle between the dimethylamino and phenyl moieties
increases, see Table 3.7, something that does not occur with the other solvents.
Almost half of the solvent shift comes from this distortion of the geometry, the
rest is explained by the breaking of the HBs mentioned before.
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Figure 3.14 Occupancy map of oxygen atoms around the ground state of DMA. Solid

isosurface at a density value of 0.64.

Table 3.7 Twisting angle (in degrees) for optimized geome-

tries of DMA in several solvents

Angle

Gas 28.4
Cyclohexane 28.7
CH/THF (0.5) 28.5
Tetrahydrofuran 28.5
Water 34.0
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Another interesting case is the study of the solvent effects on the electron
transitions in retinal [68,69]. Retinal is a very interesting molecule because it
is the chromophore of rhodopsin, the visual pigment in vertebrates. The
(p–p�) electron transitions to the first two excited states of 11-cis-retinal
protonated Schiff base (PSB) and several simplified models that have been
profusely used in the bibliography (see Figure 3.15) were calculated in
vacuo and in methanol solutions. The ASEP/MD method was employed
for the in solution calculations. Full ground-state geometry optimizations
were performed in both conditions, allowing the total relaxation of all the
degrees of freedom at MP2 and/or CASSCF level of calculation with the
split-valence 6-31G� basis set. Nevertheless, the transition energies were
always obtained at CASSCF/6-31G� level of calculation using in each case
the complete active p space (10e, 10o), or (12e, 12o) depending on the model
used. To improve the energy results, the dynamic electron correlation
energy was included with second-order perturbation theory (CASPT2).

In vacuo, the first transition gives rise to a very strong band, while the
transition to the second state is almost forbidden. In the ground and second
excited states, the positive charge is localized close to the nitrogen atom
(covalent states); however, in the first excited state the charge is spread out
on the entire molecule (ionic state), see Figure 3.16. Consequently, the
second excited state will solvate better than the first and one expects that
the energy gap between the two states decreases. In fact, we find that in
methanol solution, both states become almost degenerate. Furthermore, the
oscillator strength of the transition to the second state increases. This beha-
vior agrees with the experimental spectra [70–72], where, in gas-phase
conditions two bands are found, one weak and the other strong but only a
single very broad band appears in methanol solution.

Table 3.8 collects vertical transition energies in solution and the corre-
sponding solvent shifts obtained for different models of retinal. At first
sight, the interaction with the solvent seems to produce the inversion in
the relative position of the first two excited states, the covalent state becom-
ing lower in energy with respect to the ionic one. The nature of the different
states was corroborated by the dominant configuration participating in
each state, that is, doubly excited for the covalent and a highest occupied
molecular orbital (HOMO)–lowest unoccupied molecular orbital (LUMO)
transition for the ionic. Oscillator strengths were also calculated, being the
transition to the upper excited state the optically allowed transition (f value
close to 1). The energy difference between the covalent and ionic states
varies between 0.7 eV and 0.3 eV at CASSCF//MP2 level of calculation.
The scene changes substantially when dynamic correlation is taken into
account. Under these conditions, both states become practically degenerate,
and we find an energy gap between them of about 0.1 eV. The proximity
between these electron transitions gives rise to the fact that, contrary to the
in vacuo conditions, the in solution theoretical absorption spectrum shows
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Table 3.8 Calculated vertical transition energies (eV), oscillator strengths, and solvent

shifts values (eV) for the M1, M2, M3, and CC-PSB models

S0!Ionic S0!Covalent

Vacuo Solution � Vacuo Solution

M1
CASSCF/CASSCF 3.55 5.22 1.67 4.61 4.62
CASPT2/CASSCF 2.56 3.82 1.26 3.58 3.78
CASPT2/MP2 2.40 3.51 1.11 3.16 3.61
Oscillator strength 1.15 1.00 0.09 0.01

M2
CASSCF/CASSCF 3.34 4.93 1.59 4.34 4.44
CASPT2/CASSCF 2.56 3.68 1.12 3.64 3.45
Oscillator strength 0.97 0.87 0.21 0.23

M3
CASSCF/MP2 3.03 4.08 1.05 4.05 3.78
CASPT2/MP2 2.28 2.99 0.71 3.27 2.88
Oscillator strength 0.95 0.91 0.22 0.21

CC-PSB
CASSCF/MP2 2.54 4.19 1.65 3.42 3.87
CASPT2/MP2 1.93 3.00 1.07 2.77 2.95
Oscillator strength 1.20 0.93 0.06 0.15

Experimental 2.03 2.79 3.18
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two poorly resolved bands. Our results confirm the recent experimental study
published by Nielsen et al. [72]. In this study, the authors provide the in vacuo
and the in solution electronic absorption spectra of the all-trans n-butyl PSB in
methanol solution and also the in vacuo spectrum for the 11-cis dimethyl
Schiff base. The in solution registered spectra for the two isomers are said to
be identical. The experimental gas-phase spectrum shows a band at 390nm
corresponding to the S2 absorption band maximum and another at 610nm
corresponding to the transition to the S1 state. When the spectrum is recorded
in methanol solution, the S1 band maximum is blue-shifted by more than
150nm and what is more important, no resolved S1 and S2 bands were
found. The spectrum shows only a broad band centered at around 450nm
(2.76eV). Independently of the model used in the calculations, our theoretical
results completely reproduce the appearance of the experimental spectra.

Another interesting quantity to evaluate is the predicted solvent shift.
These values are also collected in Table 3.8 and were calculated as the shift
suffered by the ionic band as a consequence of the solvent effect. Surprisingly,
CASPT2 calculations supply practically the same solvent shift (around 1.1 eV)
value independently of the system complexity, except for the M3 model where
the value is slightly lower. In all cases the calculated value is larger than the
experimental one, estimated in 0.72 eV (2.76 eV, the electronic transition energy
in methanol solution, minus 2.03 eV, in vacuo). The fact that the complete
chromophore (CC)-PSB system shows the same solvent shift overestimation
as most simplified models (M1 or M2) is due to a structural characteristic of the
system shared by all of them. Most of the solvation energy comes from the
interaction between the iminium group and the methanol molecules. In all the
systems here considered, the N atom is bonded to two hydrogen atoms;
however, the experiments have been performed with molecules where the N
is bonded to methyl or bulkier groups. In order to get more details, new
calculations were performed. In particular a new model (M4) was built repla-
cing the hydrogen atoms linked to the N atom in M1 with two methyl groups.
Both CASSCF and MP2 geometry optimizations were performed in vacuo and
in methanol solution keeping the same conditions as in previous calculations.
The solvent shift obtained for this model was 0.84 eV and 0.64 eV at
CASPT2//CASSCF and CASPT2//MP2 level of calculation, respectively.
Comparison with the equivalent results for M1 shows that the methyl groups’
incorporation decreases the solvent shift value in around 0.45 eV. If this
decrease is directly applied to the CC-PSB solvent shift, the final value becomes
0.65 eV, in very good agreement with experimental data (0.72 eV).

5.3. Nonradiative de-excitations in retinal

Even if the very first step of the visual process can be considered the light-
induced promotion of one electron from a p-type orbital to a p� one in the
chromophore of the protein rhodopsin, its biological activity starts with the
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cis–trans isomerization that this chromophore suffers in the excited state.
This conformational inversion causes in turn a conformational change in the
protein and starts the rest of the reactions taking place in the visual process.
Inside the protein pocket, this isomerization step is very fast, taking only
200 fs, and no significant fluorescence is usually observed. These properties
are characteristic of nonradiative processes involving crossings between
potential energy surfaces. These crossings can take place through CIs or
singlet–triplet crossings (STC) depending on the identical of different spin
symmetry of the involved states, respectively.

In the last decade, there have been quite exhaustive studies on the
isomerization of the rhodopsin chromophore through a CI between its
covalent ground state and the ionic first excited state in vacuo conditions.
Different models for the chromophore representation and more and more
accurate methods have been used in these studies. It has been only in the
last years when the development of the computational resources has per-
mitted the study of this process in a more realistic way, that is, considering
the possible effect of the environment. In our case, we have used an
extended version of the ASEP/MD method that allows the location of CIs
and STCs of systems in solution. The algorithm implemented in the method
is due to Bearpark et al. [73] and simultaneously minimizes the in solution
energy difference between the two intersecting states and the energy of the
crossing seam between the two potential energy surfaces. See Ref. [74] for
more details.

We started our study with the location of the in vacuo minimum energy
conical intersection (MECI) structure for the simplest model used in the
previous study devoted to the solvent effect on the UV absorption spectrum.
The main structural characteristic of this CI is a twist of �90� showed by the
central original double bond. In order to permit this change in the dihedral
angle, it is necessary the inversion in the nature of the single and double
bonds with respect to the FC structure, which is clearly observed in Table 3.9.
Next, our objective was the study of the solvent influence (methanol, in
particular) on the structure and position of the MECI. In this point, two
strategies were followed depending on whether the solvent is considered as
a frozen solvent or it is allowed to equilibrate with the solute electronic
distribution. The first corresponds to an infinitely slow solvent response
and the second to an infinitely fast solvent reorganization.

In the equilibrium case, it is possible to locate the MECI in solution, and
from a structural viewpoint, the solvent modifies bond distances and
slightly the twist of the dihedral angle. What is worth noting is that the
solvent suffers an important restructuring around the solute molecule to
respond to the torsion of almost 90� of its central dihedral angle from the FC
structure. Figure 3.17 displays the occupancy maps of methanol oxygen
atoms around the FC and MECI structures. As it can be seen, at the FC
point the solvent is mainly concentrated around the iminium end, where the
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Table 3.9 Optimized geometries of a retinal model at the Franck–Condon point and at

the conical intersection. Bond lengths in ångström, angles in degrees

FC MECI S0/S1

Vacuo Methanol Vacuo Methanol

C1C2 1.35 1.34 1.36 1.36
C2C3 1.46 1.47 1.42 1.40
C3C4 1.35 1.36 1.41 1.41
C4C5 1.45 1.45 1.38 1.36
C5C6 1.36 1.36 1.47 1.46
C6C7 1.45 1.46 1.37 1.41
C7C8 1.35 1.36 1.42 1.39
C8C9 1.44 1.43 1.39 1.44
C9¼N 1.28 1.28 1.32 1.30
Dihedral Planar Planar 91.0 85.9

Figure 3.17 Maximum occupancy regions of oxygen atoms around the ground state (top)

and the MECI (bottom) of the M1 retinal model.
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molecular charge is predominantly located, as at the FC the solvent is in
equilibrium with the ground state covalent electronic distribution. At the
MECI, one finds solvent molecules around the iminium end but also around
the carbon skeleton along which at the excited state the charge is spread out.
It can be concluded that in the equilibrium situation solvent molecules
stabilize the delocalization of the charge in the excited state and the two
states involved in the CI can cross. In frozen solvent conditions, the location
of the MECI has been impossible. If the solvation shells are considered fixed
and in equilibrium with the ground-state electronic distribution, when the
central dihedral angle rotates, part of the solute molecule will overlap with
the solvent. In addition, if the solvent can in some way equilibrate with the
solute, the great restructuring that it should suffer must take several
picoseconds and the isomerization in solution should be slower than in
vacuo or inside the protein pocket. This fact agrees with somewhat more
persistent fluorescence found for the rhodopsin chromophore in methanol
solution [75].

6. SUMMARY

The theoretical study of solvent effects is, in general, very demanding
because it requires extensive sampling of the configurational space of the
solute�solvent system. The MFA provides a practical and effective approach
that opens the possibility of studying chemical equilibria, spectroscopic
transitions, kinetic problems, and so on, using computational levels similar
to those used for gas-phase systems. The study of different systems and
processes in solution has permitted us to conclude that the MFA works very
well, even in those cases where the solvent is represented in a simplified
way, a dielectric for instance. Obviously, in this case, we must restrict
ourselves to systems where specific solute�solvent interactions are not pre-
sent. If these interactions are present, it is compulsory the use of more
sophisticated solvent descriptions that allow accounting for the effect
of bulk and specific interactions. ASEP/MD is a method that permits to
combine a high-level quantum mechanical description of the solute with a
detailed, microscopic, description of the solvent.

The following are the main characteristics of ASEP/MD: (1) A reduced
number of quantum calculations that permits to increase the description
level of the solute molecule which, in fact, can be described at the same level
as in isolated conditions. (2) Since the solvent is described through MM
force fields, there exists a great flexibility to include both bulk and specific
interactions into the calculations. (3) At the end of the procedure, the solute
wave function and the solvent structure become mutually equilibrated, that
is, the solute is polarized by the solvent and the solvent structure is in
equilibrium with the polarized solute charge distribution. (4) Finally, the
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method permits to find in an efficient way the geometry of critical points.
With critical points we refer to minima, transition states, CIs, and so on.

In the last section of this chapter, we have presented an overview of
applications of the ASEP/MDmethod to different systems and phenomena.
The approximations and methodology used have been validated through
comparisons with other studies and accepted methods and, in general, it has
been shown that ASEP/MD is a powerful and efficient method that does not
introduce significant errors but, in contrast, makes it possible to consistently
introduce the solvent influence on high-level quantum calculations.
Conformational equilibria, chemical reactivity, and electron transitions are
just three areas where solvent effects play an important role and where
ASEP/MD has proved to be a valuable tool.
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