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4.5.1 The ASEP/MD Method

The ASEP/MD method, acronym for Averaged Solvent Electrostatic Potential from
Molecular Dynamics, is a theoretical method addressed at the study of solvent effects that
is half-way between continuum and quantum mechanics/molecular mechanics (QM/MM)
methods. As in continuum or Langevin dipole methods, the solvent perturbation is
introduced into the molecular Hamiltonian through a continuous distribution function,
i.e. the method uses the mean field approximation (MFA). However, this distribution
function is obtained from simulations, i.e., as in QM/MM methods, ASEP/MD combines
quantum mechanics (QM) in the description of the solute with molecular dynamics (MD)
calculations in the description of the solvent.

The MFA [1] introduces the perturbation due to the solvent effect in an averaged
way. Specifically, the quantity that is introduced into the solute molecular Hamiltonian
is the averaged value of the potential generated by the solvent in the volume occupied
by the solute. In the past, this approximation has mainly been used with very simplified
descriptions of the solvent, such as those provided by the dielectric continuum [2] or
Langevin dipole models [3]. A more detailed description of the solvent has been used
by Ten-no et al. [4], who describe the solvent through atom–atom radial distribution
functions obtained via an extended version of the interaction site method. Less attention
has been paid, however, to the use of the MFA in conjunction with simulation calculations
of liquids, although its theoretical bases are well known [5]. In this respect, we would refer
to the papers of Sesé and co-workers [6], where the solvent radial distribution functions
obtained from MD [7] calculations and its perturbation are introduced a posteriori into
the molecular Hamiltonian.

The main advantage of the MFA is that it permits one to dramatically reduce the
computational requisites associated with the study of solvent effects. This allows one to
focus attention on the solute description, and it consequently becomes possible to use
calculation levels similar to those usually employed in the study of systems and processes
in the gas phase. Furthermore, in the case of ASEP/MD this high level description of
the solute is combined with a detailed description of the solvent structure obtained from
molecular dynamics simulations. Thanks to these features ASEP/MD [8] enables the study
of systems and processes where it is necessary to have simultaneously a good description
of the electron correlation of the solute and the explicit consideration of specific solute–
solvent interactions, such as for VIS–UV spectra [9] or chemical reactivity [10].

Details of the Method
As usual in QM/MM methods, the ASEP/MD Hamiltonian is partitioned into three
terms [11]

Ĥ = ĤQM + ĤMM + ĤQM/MM (4.140)
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corresponding to the quantum part, ĤQM, the classical part, ĤMM and the interaction
between them, ĤQM/MM. The quantum part comprises only the solute molecule. The
classical part comprises all the solvent molecules.

The energy and wavefunction of the solvated solute molecule are obtained by solving
the effective Schrödinger equation:(

ĤQM + ĤQM/MM

)
�>= E�> (4.141)

The interaction term, ĤQM/MM takes the following form [8]:

ĤQM/MM = Ĥelect
QM/MM + Ĥvdw

QM/MM (4.142)

Ĥelect
QM/MM =

∫
dr · ̂· < VS�r�� > (4.143)

where ̂ is the solute charge density operator and the brackets denote a statistical average.
The term < VS�r�� >, named ASEP, is the average electrostatic potential generated by
the solvent at the position r, and is obtained from MD calculations where the solute
molecule is represented by the charge distribution  and a geometry fixed during the
simulation. The term Ĥvdw

QM/MM is the Halmiltonian for the van der Waals interaction, in
general represented by a Lennard-Jones potential. A few clarifications are relevant at this
point. Firstly, not all the configurations generated by the simulation are included in the
ASEP calculation. We include only configurations separated by 0.05 ps. In this way, we
decrease the statistical correlation between the selected configurations. Secondly, only
the electrostatic term enters into the electron Hamiltonian. Other contributions to the
solute–solvent interaction energy (repulsion and dispersion terms included in Ĥvdw

QM/MM)
are treated with empirical classical potentials, and since they depend only on the nuclear
coordinates, they do not affect the solute electron wavefunction.

For computational convenience, the potential < V̂S�r�� > is discretized and repre-
sented by a set of point charges �qi� that simulate the electrostatic potential generated by
the continuous solvent distribution

< V̂s�r�� >= ∑
i

qi

r − ri
(4.144)

The set of charges �qi� is obtained in three steps:

(1) Each selected configuration is translated and rotated in such a way that all of the solvent
coordinates can be referred to a reference system centred on the centre of mass of the solute
with the coordinate axes parallel to the principal axes of inertia of the solute.

(2) Next, one explicitly includes in the ASEP the charges belonging to solvent molecules that, in
any of the MD configurations selected, lie inside a sphere of radius a and that include at least
the first solvation shell (Figure 4.26). The value of any charge is then divided by the number
of solvent configurations included in the determination of the ASEP. Next, in order to reduce
the number of charges, one adds together all the charges closer to each other than a certain
distance. This distance is generally taken as 0.5 Å.

(3) Finally, one includes a second set of charges representing the effect of the solvent molecules
lying outside the first solvation shell (Figure 4.27). These charges are obtained by a least
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squares fit to the values of the ASEP originated by the outer solvent molecules in a three-
dimensional grid defined inside the volume occupied by the solute molecule. The solute volume
is defined through a set of interlocking spheres of radius fRvdw, where f is a numerical factor
close to unity, and Rvdw are the Bondi radii.

Figure 4.26 Charges representing the ASEP generated by the first solvation shell.

Figure 4.27 Charges representing the ASEP generated by the outer solvation shell.

The total number of charges introduced into the perturbation Hamiltonian is generally
between 25 000 and 35 000.

The basic scheme of ASEP/MD is very simple:

(1) The procedure is begun by performing one quantum calculation for the solute molecule in the
gas phase and obtaining, by any of the procedures currently available, a set of point charges
representing the solute charge distribution. By default, in ASEP/MD the solute charges are
obtained by fitting to the molecular electrostatic potential of the solute molecule.
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(2) The solute charge distribution obtained from the quantum calculation is then used as input
in the molecular dynamics calculation. The solute–solvent Lennard-Jones parameters and the
complete solvent–solvent force field are obtained from the literature.

(3) Once the structure of the solvent around the solute molecule has been obtained from the MD
data, the charges representing the ASEP are determined by the procedure described above, and
introduced into the molecular Hamiltonian of the solute.

(4) The electronic wavefunction of the solute, now in solution, can be obtained by solving the
associated effective Schrödinger equation.

(5) A new solute charge distribution can be calculated from the solute wavefunction and used
again as input in a new molecular dynamics calculation.

This process is repeated until convergence in the solute charges is achieved. In general,
only a few cycles, 4–5, of quantum calculation/molecular dynamics simulations are
needed for convergence. However, it is convenient to continue the procedure for another
10–15 cycles. In this way, the final results can be obtained with the associated statistical
error by averaging over the last 5–10 last cycles. The scheme of the method is shown in
Figure 4.28.

Molecular dynamics

Energy and solute properties

Averaged potential, Vs(r, ρ)
→ˆ

[H 
0

 + Vs(r, ρ)] Ψ = E Ψ 
→ˆˆ

H 
0Ψ0

 = E 
0Ψ0 ˆ

q 
0
solute

q 
n
solute

Figure 4.28 ASEP/MD scheme.

Figures 4.29 and 4.30 display the co-evolution of the formamide dipole moment and of the
oxygen(formamide)–oxygen(water) radial distribution function during the polarization
process [12]. As the dipole moment of the formamide increases, the position of the first
peak of the RDF is shifted inward and its height increases. Once the dipole moment
has reached its equilibrium value, it begins to fluctuate. Fluctuations are related to the
statistical error associated with the finite length of the simulations. From Figures 4.29
and 4.30 it is clear that: (1) ASEP/MD permits one to simultaneously equilibrate the
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Figure 4.29 Evolution of the formamide dipole moment during the ASEP/MD iteration.
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Figure 4.30 Evolution of the oxygen(water)–oxygen(formamide) RDF during the ASEP/MD
procedure.

solute charge distribution and the solvent structure around it; (2) the use of in vacuo
charges (step 1) in MD simulations can yield completely erroneous results.

Comparison of ASEP/MD with Other Methods
With respect to other QM/MM methods, ASEP/MD introduces two approximations:

(1) It makes use of the mean field approximation. The mean value of any property (which in
QM/MM methods is obtained by averaging over all the system configurations) is replaced
in ASEP/MD by the value obtained from an averaged configuration. This means that MFA
neglects the correlation between the motion of the solvent nuclei and the response of the solute
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electron polarizability. The energy associated with this correlation is usually known as the
Stark component [1, 13, 14].

(2) In its current formulation the ASEP/MD method introduces a dual representation of the solute
molecule. At each cycle of the ASEP/MD calculation, the solute charge distribution is updated
using quantum mechanics but during the molecular dynamics simulations the solute charge
distribution is represented by a set of fixed point charges. The use of an inadequate set
of charges in the solute description can introduce errors into the estimation of the solvent
structure, and hence of the solute’s properties

The errors associated with the use of the mean field approximation, the Stark energy,
can be easily estimated. As an example, we give in Table 4.7 the magnitude of the
errors for the case of liquid alcohols. The calculations were performed at Hartree–
Fock and MP2 levels, and the basis set used was the aug-cc-pDZV from Dunning and
co-workers [15]. For methanol, the results obtained by averaging over 100 or 1000
configurations are compared with the result obtained using the MFA. For ethanol and
propanol, only 100 configurations were used. The Stark energy ranges between 0.3 and
0�8 kcal mol−1, representing errors lower than 5 % in all cases. The differences in dipole
moments are even lower: 0.01–0.02 D, representing 0.4–1 %. Furthermore, the small
errors in the energy introduced by this approximation can easily be corrected through the
use of approximate formulae (see ref. [1]) which permit a very easy and rapid estimation
of the Stark component.

Table 4.7 Interaction energy, Stark component (in kcal mol−1), and dipole moment (in
debyes) of alcohols in the liquid state calculated as a mean value (< E > and < � >) or with
the mean field approximation (EMFA and �MFA)

< E > EMFA WStark < 			 > 	MFA < 			 > −	MFA

HF
Methanol 1000 −19�0 −18�6 0.4 (2.1 %) 2�46 2�45 0.01 (0.4 %)
Methanol 100 −19�1 −18�7 0.4 (2.1 %) 2�46 2�45 0.01 (0.4 %)
Ethanol 100 −16�5 −16�0 0.5 (3.0 %) 2�27 2�25 0.02 (0.9 %)
Propanol 100 −14�3 −14�0 0.3 (2.1 %) 2�15 2�13 0.02 (0.9 %)
MP2
Methanol 1000 −18�3 −17�9 0.4 (2.2 %)
Methanol 100 −18�3 −17�9 0.4 (2.2 %)
Ethanol 100 −15�8 −15�4 0.4 (2.5 %)
Propanol 100 −13�7 −13�5 0.2 (1.5 %)

The magnitude of the second source of error, the use of a classical representation for
the solute during the simulation, can be estimated by comparing the results provided
by ASEP/MD with those obtained with a QM/MM method using the same level of
calculation. As an example we present the results obtained for liquid water, Table 4.8,
and formamide in aqueous solution, Table 4.9. In both cases, the basis set quality was
N,C,O(7111/411/1) H(41/1) [16]. During the DFT calculations the VWN [17] functional
with the density-gradient-corrected exchange-correlation functional proposed by Becke
and Perdew [18] was used. The DFT/MM calculations were performed with the set of
programs [19] developed in Nancy by the group of Professor Ruiz López. DFT/MM and
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Table 4.8 Comparison between the DFT/MM
and ASEP/MD results for liquid water

DFT/MM ASEP/MD

	 (D) 2�63 2�68
	0 (D) 2�08 2�08
�	 (D) 0�55 0�60
Eint �kcal mol−1� −19�5 −20�3

Table 4.9 Comparison between the DFT/MM
and ASEP/MD results for the formamide–water
system

DFT/MM ASEP/MD

	 (D) 6�89 6�91
	0 (D) 4�09 4�09
�	 (D) 2�80 2�82
Eint �kcal mol−1� −44�8 −44�9

ASEP/MD yield quite close results. For instance, for water [12], the difference in the
induced dipole moment is only 0.05 D and the difference in interaction energy is about
0�8 kcal mol−1. In percentage terms, this represents 3 % of the value of the in-solution
dipole moment and 4 % of the energy. Similar results are obtained in the formamide–
water system [12]: the difference in the values obtained for the induced dipole moment
with ASEP/MD and DFT/MM is only 0.02 D, which represents about 1 %. The interaction
energy has a similar behaviour: the values obtained with the two methods differ only by
0�1 kcal mol−1 (0.2 %).

A somewhat more problematic situation was found in triazene [20] in aqueous solution.
In this case, ASEP/MD completely failed to reproduce the solvent structure around N2
and N3 (see Figure 4.31) as obtained with QM/MM methods, and hence it underestimated
the solute–solvent interaction energy. A detailed analysis of the situation showed that
the problem was the incorrect description of the solute charge distribution of triazene
during the MD calculation. By default, and following the trend used for most force
fields, the ASEP/MD method places a charge on each nucleus of the molecule. In the
case of triazene this prescription yielded incorrect results. The inclusion of additional
charges representing the lone electron pairs notably improved the results both for the
RDFs and for the solute–solvent interaction energies. The study validated the use of the
ASEP/MD method provided a physically correct and accurate description of the solute
charge distribution is used during the MD step.

4.5.2 Location of Critical Points on the Free Energy Surface

In this section we address the important question of the determination of the critical
points on the free energy surface (FES). The FES is defined as the energy associated with
the time average of the forces acting on each atom of the solute molecule. In optimizing
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Figure 4.31 Oxygen(water)–nitrogen(triazene) RDF. Comparison between the DFT/MM
and ASEP/MD results using six and nine point charges to represent the triazene molecule.

geometries, ASEP/MD uses a free-energy gradient method [21–23]. In this method the
forces experienced by the solute atoms are obtained from simulations where the solute
molecule has a fixed geometry. From the mean gradient, a new geometry closer to the
minimum can be generated. The process is repeated until the gradient converges to a
desired precision. The method permits one to obtain both stable structures and transition
states.

Because of its use of average quantities, the free-energy gradient method is especially
suited for use together with the MFA. Their joint application permits a considerable saving
of computation time. The force experienced by the solute nuclei when the geometry is
defined by the point r of the FES is: [21–23]

F�r� = −�G�r�

�r
= −

〈
�V�r�

�r

〉
(4.145)

where G(r) is the free energy, V is the sum of intra- and intermolecular contributions
to the potential energy associated with the interaction with the other atoms of the solute
molecule, VQM, and with the solute–solvent interaction energy, VQM/MM, respectively. The
brackets denote a statistical average. The Hessian is:

H =
〈
�2V

�r�r

〉
−�

〈
�V

�r

�V T

�r

〉
+�

〈
�V

�r

〉 〈
�V

�r

〉T

(4.146)

H =
〈
�2V

�r�r

〉
−�

[〈
F 2

〉−�F�2
]

(4.147)

where the superscript T denotes the transposition and � = 1/RT . The last terms in
Equations (4.146) and (4.147) are related to the thermal fluctuation of the force.
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In our method, the MFA is also used to simplify the calculation of the force and the
Hessian. Because we assume a fixed geometry and a fixed charge distribution of the
solute during the simulation, the average value of the force can be replaced by the force
of the mean configuration [24]:

F�r� ≈ −� �V �
�r

(4.148)

H ≈ �2 �V �
�r�r

−�

〈
�V

�r

�V T

�r

〉
−�

� �V �
�r

� �V �T

�r
≈ �2 �V �

�r�r
(4.149)

In Equation (4.149) we have introduced an additional approximation: we have neglected
the contribution of the force fluctuations to the Hessian. Given that the Hessian is used
only to accelerate the optimization procedure, this approximation has no effect on the
optimized geometries (but does affect the calculation of the frequencies). In any case,
preliminary estimations show that the errors introduced in the trace of the Hessian in the
formamide–water systems when one neglects the fluctuation term are less than 5 %[24].

Once the gradient and Hessian are available, the positions of the minimum and saddle
point on the FES are determined by the RFO [25] algorithm. It is important to stress that
we assume that at any instant the solvent is in equilibrium with the charge distribution
of the solute. As a consequence, nonequilibrium contributions are completely neglected,
and if necessary must be included a posteriori.

4.5.3 Free Energy Differences

In most practical applications, one needs to know the free energy difference between two
states, reactants and products or reactants and transition state, for instance. This magnitude
provides the evolution direction for P and T constant. In ASEP/MD the standard free
energy difference between the initial and final state in solution is approximated as

�Gs = �Esolute +�Gint +�ZPEsolute (4.150)

where �Esolute is the ab initio energy difference between the two QM models, �Gint is
the difference in the solute–solvent interaction free energy and �ZPEsolute include the
zero-point energy and the entropy and thermal contributions to �Esolute.

Calculation of �Esolute

The ab initio energy difference between the two QM structures is defined as

�Esolute = EB −EA =<�BĤ0
B�B > − <�AĤ0

A�A > (4.151)

Here, Ĥ0
X is the in vacuo Hamiltonian of the structure X, and �X is the electron

wavefunction of the structure X calculated in the presence of the perturbation due to the
solvent. �X is obtained by solving the effective Schrödinger equation, Equation (4.141).
EB and EA are calculated using the geometries optimized in solution.
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Calculation of �ZPEsolute

This term is calculated in a completely equivalent way to that used for in vacuo calcula-
tions. The only additional consideration is that the vibrational frequencies and molecular
geometries necessary for the calculation of the vibrational, rotational and translational
partition functions of the solute are calculated in solution.

Calculation of �Gint

The free energy perturbation method [26,27] is used to determine the free energy change.
The solute geometry is assumed to be rigid and a function of the perturbation parameter
��� while the solvent is allowed to move freely. When � = 0, the solute geometry and
charges and the solute–solvent Lennard-Jones parameters correspond to the initial state.
When � = 1, the charges, Lennard-Jones parameters, and geometry are those of the final
state. For intermediate values, a linear interpolation is applied.

We must remark that this term is calculated classically. This point needs clarification.
In the determination of the energies, geometries, and charge distribution of the initial
and final states in solution, the solute is represented quantum mechanically. However,
once one has determined these magnitudes, the calculation of �Gint is performed through
molecular dynamics simulations where the solute is represented by a set of point charges.
This approximation permits one to reduce markedly the computational cost. Furthermore,
if a sufficiently good solute charge distribution is used, no improvement is expected from
replacing the classical by the quantum representation. A more detailed discussion of this
point can be found in ref. [20].

As an application example [10], Table 4.10 presents the different contributions to the
activation free energy for the Menshutkin reaction between NH3 and CH3Cl. The solvent
decreases the activation free energy as expected given that reactants are neutral while
the transition state is characterized by a strong charge separation. This fact is reflected
in the value of �Gint. More striking is the fact that the charge separation in the transition
state is lower in solution that in the gas phase. The explanation is that in solution, as a
consequence of the decrease of the activation energy, the TE is reached earlier (a measure
of the reaction advance degree is the C−Cl distance) and the charge separation is hence
lower. As a consequence, the solute internal energy in solution decreases with respect to
the gas-phase value. This energy makes a substantial contribution to the decrease in the
activation free energy.

Table 4.10 Activation free energy and its components for the
Menshutkin reaction. Energies are in kcal mol−1, distances in
ångströms and dipoles in debyes

DFT/aug-cc-pVDZ in vacuo in solution Exp(CH3I)

�E‡
solute 32�70 27�48

�ZPE‡ 12�23 11�86
�G‡

int — −13�70
�G‡ 44�93 25�64 23�5
d�C−Cl�‡ 2�44 2�18
	‡�D� 12�48 11�09
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4.5.4 Electron Transitions

If the electron solvent polarization is neglected, the study of electron transitions and the
determination of the solvent shift do not require appreciable modifications in the basic
scheme of ASEP/MD. During a Franck–Condon transition the solute and solvent nuclei
remain fixed and hence the ASEP obtained for the initial state can be used for the rest
of the states of interest. However, it is known that the electron degrees of freedom of
the solvent can respond to the sudden change of the solute electron charge distribution.
In fact, the polarization component can contribute appreciably to the final value of the
solvent shift. The determination of this component requires additional calculations where
the solute and solvent charge distributions are equilibrated. Each electronic state requires
a separate calculation of the solvent polarization component. It is hence necessary to
perform as many polarization calculations as electronic states being considered.

The inclusion of the solvent polarization in ASEP/MD involves two types of calcula-
tions: (1) the solvent structure and the solute geometry for the initial state (the ground state
in an absorption process or the excited state in an emission process) are determined using
the ASEP/MD procedure with no polarizable solvent; (2) the electron solvent polariza-
tion is determined for the state of interest by coupling the quantum mechanical solute in
the state under study with the electron polarization of the solvent using the solvent struc-
ture and solute geometry obtained in the first step. To do this, one assigns a molecular
polarizability to every solvent molecule. Simultaneously, one replaces the effective water
charge distribution used in the MD calculation (TIP3P or SPC, for instance, that implic-
itly include the solvent polarization) by the gas-phase values of the solvent molecule,
q0

solvent. The details of the procedure can be found elsewhere [9].
The solvent shift, �, and its different contributions are obtained as the difference

between the internal energies, U , of the excited and ground states:

� = Uex −Ug = 1
2
�pq +�q + 1

2
�p +�solute

dist (4.152)

Here, q refers to the permanent charges of solvent molecules, p to the solvent induced
dipoles, and  is the solute charge density. The last term in Equation (4.152) is the
distortion energy of the solute, i.e., the energy spent in polarizing it.

The above procedure has been successfully applied to the study of solvent effects
in the electron spectra of several chromopheres in solution: carbonyl compounds [9a],
acrolein [9c] retinal [9d] etc. As an example, Table 4.11 presents the different contribu-
tions to the solvent shift in the n → �∗ transition in acrolein. The largest contribution
to the solvent shift comes from the interaction between the solute and the permanent
charges of the solvent. However, the contribution of the solvent polarization (compo-
nents associated with the induced dipoles) is also important, representing about 26–35 %
of the total solvent shift. Values in parentheses include the dynamic correlation energy
of the solute calculated using the CASPT2 method as implemented in the MOLCAS
program package [28]. When this component is included, the solvent shift values become
4�5±0�2 kcal mol−1. The experimental solvent shift for acrolein in water was estimated
to be 4�50 kcal mol−1.
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Table 4.11 Solvent shift and its components (in kcal mol−1)
for the vertical absorption and emission transitions of the
acrolein in water solution

1
2 
pq 
�q

1
2 
�p �solute

dist 


Absorption 0�02 5�45 1�02 −2�10 4.3 (4.5)
Emission 0�01 1�22 0�67 0�69 1.3 (1.7)

4.5.5 Summary

The mean field approximation permits one to reduce markedly the computational cost
associated with the inclusion of solvent effects, and does not introduce significant errors
in the evaluated quantities. Thanks to these characteristics it has had great success in
computational chemistry as is demonstrated by the great number of methods that use
this approximation: continuum models, Langevin dipoles, RISM/SCF, and the program
developed by our group named ASEP/MD. The feature that characterizes and distin-
guishes ASEP/MD from the rest of models is that it represents the solvent through a
classical force field, i.e. the perturbation due to the solvent is obtained from molecular
dynamics simulations. This special combination of MFA and simulations enables the
study of systems and processes where a good description of the solute wavefunction
must be combined with the consideration of specific solute–solvent interactions. These
features are required in fields such as electron transitions, intermolecular interactions,
and chemical reactivity, for instance.
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