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Abstract It is well known that solvents can modify the frequency and intensity of
the solute spectral bands, the thermodynamics and kinetics of chemical reactions,
the strength of molecular interactions or the fate of solute excited states. The
theoretical study of solvent effects is quite complicated since the presence of the
solvent introduces additional difficulties with respect to the study of analogous
problems in gas phase. The mean field approximation (MFA) is used for many of
the most employed solvent effect theories as it permits to reduce the computational
cost associated to the study of processes in solution. In this chapter we revise the
performance of ASEP/MD, a quantum mechanics/molecular mechanics method
developed in our laboratory that makes use of this approximation. It permits to
combine state of the art calculations of the solute electron distribution with a
detailed, microscopic, description of the solvent. As examples of application of the
method we study solvent effects on the absorption spectra of some molecules
involved in photoisomerization processes of biological systems.

5.1 Introduction

There are many situations in which the electron distribution of molecules suffers
important changes; some examples are chemical reactions, where bonds are formed
or broken, or electron excitations, where large charge redistribution takes place. It is
well known that a classical description (through force fields) does not reproduce
adequately the charge flows that accompany these processes and the use of quantum
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mechanics becomes compulsory. Luckily, in most cases, the changes in the electron
distributions are limited to only a small part of the system, usually, the active center
or the chromophore. In these situations the use of focused methods [1] is especially
useful. In focused methods the whole system is partitioned into two parts, the part
of interest or focused part and the surroundings. In general, the part of interest of the
system is quantum-mechanically described while the rest of the system is classically
described. Examples of focused methods are dielectric continuum methods [1–4] or
quantum mechanics/molecular mechanics (QM/MM) methods [5–7].

A characteristic of liquids is that they have many thermally accessible confor-
mations. Consequently, in the study of the properties of these systems we must
resort to some of the techniques developed by statistical mechanics. The presence of
a surrounding medium can have important effects on the geometry, charge distri-
bution, reactivity and spectroscopic properties of solutes. Different solvent con-
figurations can yield slightly different solute properties; consequently the value of
any molecular property must be calculated by averaging over a large enough set of
conformations or configurations.

These two factors, the great number of thermally accessible configurations and
the need to describe the charge distribution changes through quantum mechanics,
taken together, increase dramatically the computational cost associated to the the-
oretical study of chemical reactions and electron transitions of molecules in solu-
tion. Throughout the years several strategies and approximations have been
proposed to tackle this problem, in this chapter we will center in the study of one of
the most useful: the mean field approximation (MFA) [8–10]. It is worth noting that
the MFA is always applied in conjugation with focused methods. This approxi-
mation permits to dramatically improve the computational efficiency, which
explains its widely extended use for molecules and biomolecules in solution. The
importance of this approximation is evidenced by the fact that it is employed by
many of the most used methods for the study of solvent effects on chemical or
biochemical systems. The different quantum versions of dielectric continuum
models [1–4], the methods based on Langevin dipoles [11] or more elaborate
methods such as RISM-SCF [12–14], Mean-Field QM/MM [15], statistically-
mechanically averaged solvent density [16] or ASEP/MD [17–19] are representa-
tive examples of this.

In the following sections we will try to clarify the theoretical fundament of MFA
and we will discuss some applications.

5.2 Methods and Details

From a conceptual point of view the MFA is very simple [20–22]: it replaces the
energy obtained by averaging over a set of configurations with the energy of an
average configuration. The same procedure is applied in calculating any other
property. Note that in the first case we need to calculate the energy of every
configuration, while with the MFA we calculate only one energy value. Obviously,
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in this latter case the problem is how to determine and represent the average
configuration. The important point to keep in mind when we use the MFA is that
the effect of the classical subsystem, which can adopt many different configurations,
on the quantum subsystem is introduced in an averaged way.

ASEP/MD, acronym for averaged solvent electrostatic potential from molecular
dynamics, is a QM/MM method oriented towards the study of solvent effects that
makes use of the mean field approximation. It permits to combine state of the art
quantum calculations of the solute electronic wavefunction with a microscopic
description of the solvent. Its main features are: (1) in optimizing the geometry and
electronic structure of the solute the liquid structure is kept fixed. In the same way,
when the liquid phase space is explored it is assumed that the geometry and charge
distribution of the solute do not change. (2) The solute wavefunction and the liquid
structure around it are optimized using an iterative procedure where a quantum
calculation follows a molecular dynamics simulation. (3) The perturbation gener-
ated by the solvent on the solute enters into the molecular Hamiltonian in an
averaged way. (4) The location of the critical points (minima, transition states, etc.)
on the free energy surfaces is performed using a modification of the free energy
gradient method.

We pass now to detail the method. Let us suppose the total system is formed by
one solute molecule and N solvent molecules in a volume V. As usual in QM/MM
methods the total Hamiltonian of the system is defined as:

Ĥ ¼ ĤQM þ Ĥclass þ Ĥint ð5:1Þ

corresponding to the quantum region, ĤQM, the classical region, Ĥclass, and the
interaction between them, Ĥint. The quantum region is formed by the solute mol-
ecule and the classical one by the N solvent molecules. This distinction is important
only during the quantum calculation, in the MD simulation all the molecules (solute
+solvent) are classically treated.

The energy and wavefunction of the QM region are obtained by solving the
effective Schrödinger equation:

ĤQM þ Ĥint
� �� �

Wj i ¼ �E Wj i ð5:2Þ

Here the mean field interaction Hamiltonian, Ĥint, is defined as [20–22]:

Ĥint
� � ¼

Z
dr � q̂ � VSðrÞh i ð5:3Þ

where q̂ is the charge density operator of the quantum mechanical region (the
solute) and VS rð Þh i, which is named ASEP, is the average electrostatic potential
generated by the solvent molecules at the position r. The brackets denote a
statistical average over the configurational space of the classical subsystem.
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In ASEP/MD, the information necessary to calculate VSh i is obtained from a
classical molecular dynamics simulation.

From a computational point of view it is convenient to split the interaction term
into two components associated to the electrostatic and van der Waals
contributions:

Ĥint ¼ Ĥelect
int þ ĤvdW

int ð5:4Þ

In general, it is assumed that ĤvdW
int has only a small effect on the solute wave-

function and therefore it is usual to represent it through a classical potential that
depends only on the nuclear coordinates but not on the electron ones. If this is the
case, and for a given configuration of the classical subsystem, the ĤvdW

int term can
simply be added to the final value of the energy as a constant.

Equations (5.2) and (5.3) show how the classical region perturbs the quantum one
and originates the solute polarization. Obviously, the classical subsystem depends in
turn on the charge distribution of the quantum subsystem. As a consequence,
Eq. (5.2) becomes an implicit non-linear expression that needs to be solved itera-
tively. At the end of this procedure, when convergence is reached, the solute charge
distribution and the solvent structure around it become mutually equilibrated.

Scheme 5.1 can help to clarify the different steps of the ASEP/MD method. It
begins by solving the Schrödinger equation of the isolated quantum subsystem.
From this we obtain the electron distribution or any other derived quantity like the
atomic point charges, etc., that are used to represent the solute in a classical
molecular dynamics simulation. The ASEP calculation implies an average of the
different configurations that the classical subsystem can adopt. Next, the ASEP is
introduced into the molecular Hamiltonian. By solving the associated Schrödinger
Eq. (5.2) we get the wavefunction of the quantum subsystem perturbed by the
classical one. This perturbation modifies both the geometry and electron distribu-
tion of the quantum subsystem that consequently becomes polarized. The new
charge distribution is used to recalculate the ASEP that is again introduced into
Eq. (5.2). The procedure is repeated until convergence is attained, which typically
occurs in a few cycles. At the end of this iterative procedure we get the energy,
geometry and wavefunction of the quantum region and the structure of the classical
region.

It is worth of note that most of the configurations generated in a MD simulation
are not statistically independent, i.e., they do not provide additional information
from a statistical point of view [23, 24]. So, in order to decrease the statistical
correlation between the selected configurations it is important to include just those
configurations separated by a time interval larger than the relaxation time. The
length of this interval varies depending on the system under study, although
intervals of at least 0.05 ps are usually needed. More important than including many
configurations in the ASEP calculation is that they span a long enough simulation
time (at least several hundreds of ps). In general, converged results are obtained
with 500–1000 statistically independent configurations.
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Another important point to clarify is what is the most adequate way of introducing
ASEP into the Hamiltonian. There are several possibilities: numerically, as a set of
point charges, using multipole expansions, etc. In general, we use a point charge
representation, as it provides a compromise between accuracy and computational
cost. The problem with this option is that the number of charges increases rapidly
with the size of the system and with the number of configurations included. So, for
instance, for a simulation with 500 molecules with five atoms per molecule and using
1000 configurations in the ASEP calculation we have 5 × 500 × 1000 = 2500000
charges. In order to keep a tractable number of charges we include explicitly only
those charges associated to molecules that belong to the first solvation shell of the
solute. The effect of the remaining solvent molecules is described by using
potential-fitted charges. A further charge number reduction method permits to reduce
their number to only a few thousands. More details about the calculation and rep-
resentation of the ASEP can be found elsewhere [17–19, 25–27].

For optimizing the geometry of the quantum system we use a variant [28] of the
free energy gradient method [29–31] that permits the determination of critical
points on free energy surfaces (FES). The FES is defined as the energy associated
with the time average of the forces acting on the solute molecule. Let A be the
Helmholtz free energy of a system. The force felt by the solute molecule reads

F Rð Þh i ¼ � @A
@R

¼ � @E
@R

� �
¼ � @EQM

@R
� @Eint

@R

� �
ð5:5Þ

R being the nuclear coordinates of the solute, E the energy obtained as the
solution of the Schrödinger Eq. (5.2), EQM ¼ W HQM

�� ��W� �
; Eint ¼ W Hintj jWh i and

where we have assumed that Eclass does not explicitly depend on the solute nuclear
coordinates R and that the geometry of the quantum part is keep fixed during the
MD simulation. The brackets denote a configurational average. Note that
E incorporates both intramolecular, EQM, and intermolecular, Eint, contributions.

In the same way the Hessian reads:

G R;R0ð Þh i ¼ @2E
@R@R0

� �
� b

@E
@R

@E
@R0

	 
T
* +

þ b
@E
@R

� �
@E
@R0

T� �
ð5:6Þ

where the superscript T stands for transpose and β = 1/kBT. The last two terms in
Eq. (5.6) are related to the thermal fluctuations of the force.

Turning to the expression of the force, it is convenient to split the interaction
term into two components associated with the electrostatic and van der Waals
contributions:

F Rð Þh i ¼ � @EQM

@R
� @Eelect

int

@R

� �
� @EvdW

int

@R

� �
ð5:7Þ
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At this point one can introduce the MFA by replacing the average derivative of
Eelect
int with the derivative of the average value. The force now reads [28]:

F Rð Þh i ¼ � @EQM

@R
� @�Eelect

int

@R
� @EvdW

int

@R

� �
ð5:8Þ

and, analogously, the Hessian reads:

G R;R0ð Þh i ¼ � @2EQM

@R@R0 �
@2�Eelect

int

@R@R0 �
@2EvdW

int

@R@R0

� �
ð5:9Þ

where, in agreement with the mean field approximation, the force fluctuation term
has been neglected. Once the gradient and Hessian values are known, we can use
any of the usual optimization methods, RFO [32] for instance, to get the optimized
geometry and couple it with Scheme 5.1.

A point that deserves attention is the contribution of the electronic solvent
polarization to the solvatochromic shifts. Most force fields use atomic point charges
that include the effect of electron polarization in an implicit way. The main problem
with the use of this implicit description of the electronic polarization is that it gives
a vanishing contribution when one compares situations where the solvent structure
is fixed, for instance when the Franck-Condon principle is applied in vertical
transitions. In these situations it is convenient to have a model to compute explicitly

Scheme 5.1 Scheme of the
MFA iterative procedure
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the contribution of the electronic polarization component. To this end, we assign a
molecular polarizability to every solvent molecule, and simultaneously replace the
effective solvent charge distribution used in the MD calculation with the gas phase
values of the solvent molecule. This point is important, because otherwise the
solvent polarization is accounted twice. The dipole moment induced on each sol-
vent molecule is a function of the dipole moments induced on the rest of the
molecules and of the solute charge distribution, and hence the electrostatic equation
has to be solved self-consistently.

The total energy of the system (quantum solute + polarizable solvent) is obtained
as:

U ¼ Uqq þ Upq þ Upp þ Uqq þ Uqp þ Usolute
dist þ Usolvent

dist ð5:10Þ

Here, q refers to the permanent charges of solvent molecules, p to the solvent
induced dipoles, and ρ is the solute charge density. The last two terms in this
equation are the distortion energies of the solute and solvent molecules respectively,
i.e., the energy spent in polarizing them. In the case of the solute it reads:

Usolute
dist ¼ W HQM

�� ��W� �� W0 HQM

�� ��W0� � ð5:11Þ

where Ψ and Ψ0 are the in solution and in vacuo solute wave-functions, respec-
tively. Explicit expressions for the different contributions can be found elsewhere
[26].

The final expression for the total energy of the system is:

U ¼ Uqq þ 1
2
Upq þþUqq þ 1

2
Uqp þ Usolute

dist ð5:12Þ

The firsts two terms of this expression are strictly classical, while the last three
involve the solute charge distribution and are calculated quantum-mechanically.

Finally, we address the application of the ASEP/MD methodology to the study
of electronic transitions. Here, we can consider two situations depending on the
description, implicit or explicit, of the solvent electronic polarization. If one uses an
implicit description of this component then it is only necessary to perform the
calculation of the different excited states in presence of the solvent charge distri-
bution obtained during the ASEP/MD procedure. If, on the contrary, we explicitly
include the contribution of this component then it is necessary to perform an
additional self-consistent process. Using the solvent structure and solute geometry
obtained in the first self-consistent process, we couple the quantum mechanical
solute and the electron polarization of the solvent. The process finishes when the
solute charge distribution and the solvent induced dipole moments become mutu-
ally equilibrated.

Once the solvation energy, Eq. (5.12), has been calculated for the ground and
excited states, the solvent shift, δ, can be obtained as the difference
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d ¼ Uex � Ug ¼ 1
2
dpq þ dqq þ 1

2
dqp þ dsolutedist ð5:13Þ

The term dqq cancels out because, in vertical transitions where the
Franck-Condon approximation is applicable, the Uqq term takes the same value in
both the ground and the excited state.

A problem with this procedure is that the solvent perturbs each electronic state of
the solute molecule in a different way, i.e., each state is an eigenfunction of a
different Hamiltonian; consequently, the different states are not mutually orthogo-
nal. This fact complicates the calculation of oscillator strength and other transition
properties of the system.

5.3 Examples

In this section we present results of the application of the ASEP/MD method to the
study of solvent effects on electron transitions in p-coumaric acid derivatives. This
system was chosen because it is an example of electron excitations that promote
internal rotation around formal double bonds. Internal rotations are characterized by
large flows of charge and, consequently, important solvent effects. Furthermore,
they are involved in very interesting phenomena, as are dual fluorescence in
push-pull chromophores [33–35] or cis-trans photoisomerization reactions [36–38].
An adequate description of the excited states involved in these processes demand
state of the art quantum calculations including both static and dynamic electron
correlation contributions. Furthermore, in many cases the solute is stabilized by
hydrogen bonds, consequently, it is compulsory to use a microscopic description of
the solvent in order to account for specific interactions. In these conditions
ASEP/MD becomes a good alternative to other methods and it can help to shed
light on these processes [39–42].

5.3.1 p-Coumaric Acid in Different Protonation States

p-coumaric acid (pCA) has been used as a model of the photoactive yellow protein
(PYP) chromophore. This protein is related with the negative phototaxis of
Halorhodospira halophila under blue light irradiation [38]. After irradiation
(446 nm), the protein enters a photocycle where the primary event is the isomeri-
zation of the chromophore’s double bond on a subpicosecond time scale, very
similar to retinal photoisomerization in the visual process [43–46]. A first evidence
of the medium effect on the p-coumaric acid chromophore is found in the
absorption spectrum. In gas phase, the p-coumaric monoanion (pCA−) absorbs at
430 nm [47, 48] whereas in water solution the absorption maximum is located at
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around 310 nm and it varies with the pH [48, 49]. It is important to note that pCA
has two hydrogen atoms susceptible of deprotonation being the carboxylic
hydrogen more acid than the phenolic one. Thus, in passing from acidic to neutral
condition, the chromophore will first lose the carboxylic hydrogen yielding the
carboxylate anion rather than the phenolate. Nevertheless, in gas phase, the phe-
nolate anion is found to be more stable than the carboxylate due to the delocal-
ization the negative charge along the structure. At basic pH the dianionic form is
obtained.

In this section we compare the absorption spectra of p-coumaric acid as a
function of its protonation state. During the ASEP/MD runs, quantum calculations
were performed with the Gaussian 09 package [50]. The final SA-CASSCF and
CASPT2 calculations were done with Molcas 7.4 [51]. All MD simulations were
performed using Moldy [52] or Gromacs [53] and assuming rigid molecules.
Lennard-Jones parameters and solvent atomic charges were taken from the
OPLS-AA (optimized potentials for liquid simulations, all atoms) force field [54,
55]. Solute atomic charges were obtained from the quantum calculations with the
CHELPG (charges from electrostatic potential in a grid) method [56, 57].

We started our study with the neutral form of the trans-pcoumaric acid (pCA).
Four conformes were studied. Two of them correspond to the cis or trans dispo-
sition of the central vinyl double bond and the carboxylic double bond of the acid
terminal group, s-cis and s-trans. For each of these species, the hydrogen of the
phenolic group can be disposed in syn or anti position relative to the central double
bond. These four species are displayed in Scheme 5.2 and are identified as I (s-cis-
anti), II (s-cis-syn), III (s-trans-anti) and IV (s-trans-syn). In gas phase, anti rota-
mers are preferred to the syn ones, in solution the opposite is verified and the syn
conformations are slightly more stable than anti.

Regarding the absorption spectrum, the most probable transition in gas phase is a
(π → π*) absorption to the S2 state with an oscillator strength of around 0.5. This is

Scheme 5.2 Conformers for the neutral form of the trans-p-coumaric acid
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a HOMO→LUMO transition involving a gap of 4.5 and 4.6 eV for the s-cis and s-
trans isomers, respectively. The transition to the S1 state corresponds to a
HOMO→LUMO+1 transition with an energy gap of around 4.23 eV for all the
forms.

In water, the most probable transition is still that corresponding to the S2 state,
with an oscillator strength of 0.4. This transition results in around 4.30 eV, which
overestimates the experimental value in about 0.3 eV. However, if the solvent
electronic polarization is explicitly considered we get a value of 4.00 eV, in perfect
agreement with the experiment. It is also observed that the S0→S1 transition is
hardly affected by the solvent interaction, being the vertical transition energies in
gas phase and in solution practically coincident. The different behavior of S2 and S1
comes from the distinct charge distribution of these states. Whereas the transition to
S2 implies an electron density displacement from the phenolic ring to the alkyl
fragment and a considerable increase in the dipole moment, S1 has a charge dis-
tribution similar to S0 and consequently they interact with the solvent in a similar
way. Due to the larger stabilization of S2 with respect to S1 in water solution the
relative stability order of the two states is reversed.

The situation is somewhat more complicated for the monoanionic form of
p-coumaric acid (pCA−) as it can appear (see Scheme 5.3) in two forms: phenolate
and carboxylate, with very different charge distributions. So, whereas in the car-
boxylate the negative charge is localized on the carboxylate end, in the phenolate
anion, the negative charge is spread along the whole molecule. In fact, in phenolate,
there is an equilibrium between a quinolic structure with the negative charge
localized at the COOH fragment, and a nonquinolic structure with the negative
charge at the phenolate oxygen. In gas phase, the ground state of the phenolate form
is clearly more stable than the carboxylate species due to its larger charge delo-
calization. Interaction with solvent molecules modifies the relative stability of the
different isomers, and in water solution, the carboxylate becomes now the most
stable form.

Scheme 5.3 Neutral, monoanionic and dianionic forms of the p-coumaric acid

144 M.E. Martín et al.



An additional complication comes from the fact that for both carboxylate and
phenolate monoanions, the gas-phase (π → π*) low-lying excited states are found
in the detachment continuum [58–60], that is, their electron detachment energies are
below the first vertical excitation energy, and therefore, these excited states are
metastable. In any case, there is a very good agreement between the calculated
CASPT2/CASSCF(12,24) gas phase excitation energy for phenolate (2.89 eV) and
the experimental data (2.88 eV).

The most probable transition in gas phase is that leading to the S1 state, with an
oscillator strength of 1.0. In water solution, the bright state remains S1, with the
same nature as in gas phase. The absorption band appears displaced toward larger
energies (3.17 or 3.09 eV depending whether the solvent is explicitly polarized or
not); consequently, there is a blue solvent shift of around 0.25 eV.

The theoretical electronic absorption spectrum of the carboxylate anion is quite
complex due to the large number of excited states lower in energy than the bright
one. In fact, the transition with the larger oscillator strength (0.50) is S0→S4. This
corresponds to a (π → π*) transition involving the HOMO and LUMO orbitals. We
find a difference of 2.1 eV between the gas-phase transition energies of carboxylate
(5.06) and phenolate (2.89). In water solution, the bright state is the S2 excited state.
It is a H→L transition, and it has an oscillator strength slightly larger than that
found in gas phase. This state is more effectively solvated and more stabilized than
the ground state, the transition energy is 4.76 eV and a red solvent shift of 0.3 eV is
found. Explicit inclusion of the electronic solvent polarization slightly increases the
transition energy until 4.81 eV.

The double anionic form of the trans-p-coumaric acid (pCA2−) is unstable in gas
phase and would suffer spontaneous autoionization. However, the interaction with
the solvent increases the ionization potential permitting the existence of pCA2− in
water solution. In gas phase, the bright state is the S2 state that corresponds to a
H→L transition, whereas the S1 state implies the transition H→L+1. In solution,
the bright excited state is stabilized and becomes the first excited state as the charge
displacement involved in this transition (−0.35 e in solution) is favored by the
solvent. The calculated transition energy in solution (3.75 and 3.73 eV for non-
polarizable and polarizable solvent, respectively) is in very good agreement with
the experimental data recently published by Boggio-Pasqua and Groenhof [61]
where the trans-p-coumaric acid in aqueous solution at pH > 10 showed an
absorption maximum at around 3.71 eV.

The variation of the transitions energies with the protonation state is displayed in
Fig. 5.1. For all the studied species, the bright state is a π → π* transition involving
a charge displacement along the system. For the neutral form, the transition
involves an increase of the dipole moment of the excited state, a fact that leads to a
larger stabilization of the excited state in water solution and consequently a bath-
ochromic shift of the absorption maximum in solution. Phenolate and carboxylate
monoanions show different behavior with respect to solvation. On the one hand, the
phenolate monoanion in gas phase shows a displacement of the charge from the
phenolic oxygen to the rest of the system during the transition, and this is enhanced
in water solution. As the displacement involves a delocalization of the negative
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charge, the excited state is worse stabilized than the ground state, and a final solvent
blue shift is achieved. On the other hand, in the carboxylate monoanion the negative
charge moves from the COO− toward the phenolic ring during the excitation. As the
solvent hinders this displacement the excited state charge becomes more localized
in solution, and consequently more stabilized than the ground state and a solvent
red shift is found. Finally, for the dianionic species the electronic transition to the
bright state involves a charge displacement from the phenolic part toward the rest of
the system and most of the negative charge is concentrated in the carboxyl end. This
displacement is enhanced in water solution; as a consecuence, the charge is more
localized and more effectively solvated in the excited state than the ground state,
and a final solvent red shift is found. In sum, except for the phenolate anion where a
blue shift is found in the rest of cases a blue shift is registered.

As for the effect of the electronic solvent polarization in the transition energies
and solvent shift values two cases can be distinguished. In neutral species, the
polarization contribution depends on the state nature. That is, it is relevant in those
cases in which there exists a significant charge displacement between the ground
and the excited state. On the contrary, in ionic forms (mono- and dianionic species),
the larger contribution to the solute-solvent interaction energy comes from the
charge−potential term and, in general, solvent polarization has only a minor
influence.

Finally, we would like to draw the attention to some attempts to mimic the
solvent environment effect by including a limited number of solvent molecules in
the quantum calculation. Putschögl et al. [62], for instance, studied the pCA2−

dianion surrounded by eight water molecules. They found that the solvent stabil-
ization was not enough to cause the inversion between S1 and S2 states in solution,
something that occurs when bulk solvation is accounted. In our case, the S1 bright
state is more stabilized than the ground state and consequently a red solvent shift of
around 0.22 and 0.23 eV (nonpolarizable and polarizable solvent, respectively) is

Fig. 5.1 Variation of the transition energies (in eV) for the trans-p-coumaric acid with the
protonation state in gas phase (full lines) and in water solution (dashed lines). For the in-solution
transition energies, the effect of the electronic solvent polarization has been included (values in
parentheses correspond to those obtained without this contribution)
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obtained in water solution. This fact evidences the importance that the bulk solvent
contribution has in this system.

5.3.2 p-Coumaric Acid Derivatives

In this section we focus on the analysis of the solvent effect and coumaryl tail on the
absorption spectrum of some p-coumaric derivatives: acid (pCA−), thioacid
(pCTA−), methyl ester (pCMe−) and methyl thioester (pCTMe−), see Scheme 5.4.
The comparison of the behavior of these systems permits to analyze the modifi-
cations introduced by the substitution of a sulfur by an oxygen atom and the
influence of the methyl group. As we will show the presence of the sulfur modulates
the solvent effect, as a consequence the first two excited states become practically
degenerated for pCA- and pCMe- but moderately well separated for pCTA- and
pCTMe-.

In gas phase and for the four derivatives (see Table 5.1) the bright state is the
first excited state with a π − π* character and oscillator strength close to one. The
second excited state is a n − π* state that involves the phenolic oxygen lone pair
and the third one corresponded to a π − π2* transition. A good agreement was found
between the calculated transition energies and the available experimental data. So,
the absorption maximum for the methyl ester derivative is experimentally found at
2.88 eV [63] whereas our CASPT2//CASSCF(14,12) value is 2.94. Explicit solvent
electronic polarization was not considered, as its contribution is negligible for
monoanionic derivatives. For the thiophenyl ester (pCT−) the transition is experi-
mentally found at 2.70 eV [64]. This value is a good reference for pCTMe− where
we found a transition energy of 2.73 eV as the electron conjugation does not extend

Scheme 5.4 Acid (pCA−), thioacid (pCMe−), methyl ester (pCTA−) and methyl thioester
(pCTMe−) derivatives of the anionic p-coumaric acid
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beyond the sulfur atom. Our results also agree with the values published by Zuev
et al. [65], 2.98 eV, using a similar level of calculation
(SS-CASPT2/ANO-RCC-VTZP) and by Gromov et al. [66], 2.89 eV, using
CC2/SV(P). The TDDFT method overestimates excitation energies. So, Muguruza
González et al. [67] reported values of 3.40 eV for the vertical energies of pCTMe−

and Sergi et al. [68] a value of 3.24 eV for pCA−. According to these values it
seems evident the poor performance of TDDFT in describing charge-transfer
excited states.

The replacement of oxygen by sulfur results in a red shift of the first absorption
band of around 0.21 eV. However, the substitution of the terminal hydrogen for the
methyl group does not modify the band position. In the four derivatives there is a
flux of charge from the phenolic part toward the rest of the molecule. This flux is
larger in pCA− and pCMe−, ≈0.22 e, than in pCTA− and pCTMe−, ≈0.13 e.
Consequently, the delocalization of the charge is larger in the excited state of the
oxo derivatives that becomes more stable than the thio derivatives.

The solvent has important effects on the geometry of the four models analyzed:
bond lengths are notably different in gas phase and in solution. So, for instance, the
phenolic oxygen bond length increases from 1.23 to 1.28 Å when one passes from
gas phase to water solution. In addition, there is a certain loss of the quinolic
character displayed in gas phase, single bonds becoming now longer and double
bonds shorter. However, and contrary to what could be expected, the carboxylic
double bond length is not modified by the solvent, probably because of the steric
hindrance and the low charge on this group (C16O17).

In the ground state of the four studied molecules the solvent originates a flux of
negative charge toward the phenolic moiety. However, during the excitation the
flux goes from the phenolic part (0.32 e) to the central double bond (0.24 e) and the
terminal moieties (0.08 e). As a consequence the negative charge in the excited
states is smoothed out along the molecule. The solvent penalizes the charge delo-
calization in the two excited states and originates a blue shift. The destabilization is
larger for the n→π* state, which becomes the third excited state. The π→π* state is
also destabilizated with respect to the π→π2* state and more in pCA− and pCMe−

than in pCTA− and pCTMe−; consequently, while in the first case the S1 and S2
states become practically degenerated, in pCTA− and pCTMe− there is a gap of
around 0.35 eV.

Table 5.1 Solute-solvent Interaction energies (kcal/mol) in the ground state and excited state

GS π→π1
*

O- -Ph C = C COXY Total O- -Ph C = C COXY Total

pCA- −158.4 16.8 −6.4 −24.6 −172.6 −139.8 34.5 −17.6 −27.6 −150.5

pCMe- −149.1 14.2 −10.7 −10.3 −155.9 −131.8 31.5 −21.8 −13.3 −135.4

pCTA- −147.5 9.4 2.2 −15.4 −151.3 −129.0 24.6 −7.3 −18.2 −129.9

pCTMe- −148.5 12.5 −4.2 −5.6 −145.8 −131.4 25.8 −13.5 −8.1 −127.2
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A quantity that can be useful in the analysis of solvent effects is the group
contribution to the solute-solvent interaction energy (Table 5.1). The molecules are
divided in portions and their relative contribution to the interaction energy and
solvent shift are analyzed. In the present case we divided the molecules in four
parts: the phenolic oxygen, the phenyl group, the central double bond and the
terminal part (acid, thio-acid, ester or thio-ester depending on the case). The larger
contribution to the total interaction energy comes from the phenolic oxygen that is
the group that carries most of the negative charge. However, the contributions of the
remaining groups are far from negligible. Electronic transition results in a decrease
of the solute-solvent interaction energy. This is mainly due to the decrease of circa
35–40 kcal/mol in the contribution of the phenolic part of the molecule (Ph-O) as
consequence of the charge flux from the phenolic part toward the rest of the
molecule. The phenyl and carbonyl groups present a reduced number of water
molecules placed in their neighborhood compared to those existing around the
phenolic oxygen, and consequently the solvent does not stabilize the transferred
charge as effectively.

It is interesting to compare ASEP/MD results with those obtained by other
authors using different methodologies. So, Gromov et al. [66] calculated a
CC2/aug-cc-pVDZ value of 2.96 eV for the transition energy of pCTMe− with two
water molecules placed close to the phenolic oxygen (the part of the molecule with
the largest interaction energy). This value is in reasonable agreement with the
experimental value of 3.22 eV published by Naseem et al. [69]. Nevertheless, those
authors report a theoretical solvent shift of 0.05 eV as they found the absorption
band in gas phase at 2.91 eV. This value is clearly underestimated when compared
with the experiment. Assuming the gas phase experimental value for pCT−

(2.70 eV) as suitable value as well for pCTMe−, the experimental solvent shift can
be estimated in 0.52 eV. Furthermore, the solvent effect on the bond length vari-
ations reported by these authors represents only one-third of that obtained with
ASEP/MD. The situation is even worse when the solvent is described using con-
tinuum methods as they fail in reproducing the correct trend, which is a blue solvent
shift. For instance, Wang [70]. performed a CPCM/TD-B3LYP study of pCTMe−

in different media. In water, the absorption energy was estimated in 3.03 eV being
this value lower than the one computed in gas phase (3.17 eV). Consequently a final
red shift was obtained. In this case, the failure in predicting the solvent shift is due
to the neglecting by continuum models of specific solvent interaction such as
hydrogen bonding. Therefore, we must conclude that the representation of the
solvent through a few solvent molecules or making use of continuum methods does
not accurately account for the solvation effects on the studied systems. In the first
case because solvation is a global property hardly represented just through a few
solvent molecules and in the second because specific interactions between solute
and solvent are missing.
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5.4 Conclusions

Microscopic solvent effect theories imply an extensive sampling of the configura-
tional space of the solute–solvent system. Furthermore, most of processes of
chemical interest involve large charge redistribution and its study requires the use of
high-level quantum-mechanical methods with the consequent increase in the
computational cost. The mean field approximation provides a way of reducing the
number of quantum calculations and, consequently, it permits to reduce the com-
putational cost associated with the inclusion of solvent effects. In this chapter the
theoretical basis of this approximation have been analyzed. We have paid special
attention to the ASEP/MD method that implements this approximation in QM/MM
methods.

The main characteristics of ASEP/MD are: (1) A reduced number of quantum
calculations, that permits to increase the description level of the solute electronic
structure which, in fact, can be described at the same level as in gas phase studies.
(2) Since the solvent is described through MM force fields, there exists a great
flexibility to include both bulk and specific interactions into the calculations. (3) At
the end of the procedure the solute wavefunction and the solvent structure become
mutually equilibrated, i.e., the solute is polarized by the solvent and the solvent
structure is in equilibrium with the polarized solute charge distribution. (4) Finally,
the method permits to perform in an efficient way optimizations on free energy
surfaces.

In this chapter we have presented some applications of the ASEP/MD method to
the study of electron transitions that promote internal rotation around formal double
bonds. More specifically we have addressed the solvent effects on the electronic
spectrum of the p-coumaric acid. Important differences in facing the solvent were
verified depending on the protonation state of the acid and the nature of the terminal
group.
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