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Abstract

An extended version of the ASEP/MD method oriented to the study of the solvent effects on the structural and energetic properties of
minimal energy crossing points between different potential energy surfaces is presented. The method, based on an extension of Bearpark’s
proposal to the case of solvated molecules, permits to locate conical intersections and intersystem crossings both in equilibrium and non-
equilibrium solvent conditions. As an application we studied the s-trans-acrolein 1(n! p*) singlet–singlet conical intersection in aqueous
solution. The ground and excited state surfaces of the solute molecule are described at CASSCF level while the solvent structure is
obtained from molecular dynamics simulations.
� 2007 Elsevier B.V. All rights reserved.
1. Introduction

Non-adiabatic processes [1] (processes that imply more
than one potential energy surface) play a key role in molec-
ular spectroscopy and chemical reaction dynamics. In the
last years, the study and characterization of this type of
processes has received much attention, among other rea-
sons because they explain a large amount of radiationless
decays and isomerization processes of polyatomic a mole-
cules [2].

Most theoretical studies performed to date on non-adi-
abatic processes have addressed the study of conical inter-
sections (CI) and intersystem crossing (ISC) in gas phase
conditions using both semiempirical [3,4] and ab initio
methods [5–9], and only recently the interest has been
shifted to the study of processes in solution [10–12]. The
reasons are obvious, to the difficulties inherent to the loca-
tion of surface crossings in vacuo one must add the compli-
cations associated to the presence of a solvent, that is, the
great number of solvent molecules that interact with the
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solute molecule and the existence of a manifold of configu-
rations thermally accessible that must be included to obtain
statistically significant results.

Several recent studies have proposed methods to intro-
duce solvent effects in the search of CI points. Burghardt
et al. [10,11], for instance, use continuum methods to study
CI in solution considering equilibrium and non-equilib-
rium solvation. In the first case the solvent follows in every
moment the changes originated in the solute charge distri-
bution during the photochemical process. On the contrary,
in non-equilibrium conditions the solvent structure is fixed
(usually in the structure corresponding to the equilibrium
with the solute ground state). The consideration of non-
equilibrium solvation is motivated by the fact that most
radiationless relaxations take place on the femtoseconds
time scale, a scale in which, probably, the solvent equilibra-
tion is not complete. Methods that permit a more detailed
description of the solvent have also been proposed, so, in a
recent paper, Yamazaki and Kato [12] use the RISM-SCF
method for describing energy surface crossing in ethylene
and CH2NHþ2 in polar solvents under non-equilibrium con-
ditions. Finally, several groups [13–15] have used QM/MM
methods to locate CI generally in non-equilibrium
conditions.
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In this letter, we present a method to locate and to
describe the energetic and geometrical properties of unavo-
ided crossings of potential energy surfaces in solution both
in equilibrium and non-equilibrium conditions. The pro-
posed method is an extension to the case of solvated mole-
cules of an algorithm due to Bearpark et al. [7], which
permits to locate the lowest energy point of the conical
intersection seam without employing Lagrange multipliers.
The method is valid for all types of crossings (although in
this letter, we restrict ourselves to the case of CI) and com-
bines a high level ab-initio quantum-mechanical description
of the solute with a detailed description of the solvent
obtained through molecular dynamics (MD) simulations.
2. Method

In a conical intersection the degeneracy between the two
intersecting surfaces is lifted linearly in displacements from
the intersection. The subspace of nuclear coordinates in
which the degeneracy is lifted is named the branching space
or g–h plane [1]. Two vectors define this plane, the differ-
ence gradient vector (~gKJ):

~gKL ¼ rðEK � ELÞ ð1Þ
and the non-adiabatic coupling vector (~hKL):

~hKL ¼ hWKjrjWLi ð2Þ
where the gradient $ is a vector in the nuclear space and WI

are the adiabatic electronic wave functions, eigenfunctions
of the electronic Hamiltonian, H, with energies Ei.

Following the algorithm proposed by Bearpark et al. [7],
to locate a minimal energy crossing point one must simul-
taneously minimize the difference between the two inter-
secting states K and L and the energy of the upper state
K along the (N � 2)-dimensional seam [3]. The direction
followed during the optimization is given by the vector [7]:

~f KL ¼ 2ðEK � ELÞĝKL

þ rEk � rEK � ĝKLð ÞĝKL � rEK � ĥKL

� �
ĥKL

h i
ð3Þ

Here, ĝKL and ĥKL are the versors defined as
ĝKL ¼~gKL=j~gKLj and ĥKL ¼~hKL=j~hKLj, respectively. The
first and second terms on the rhs of this equation do not
have the same physical dimensions. The reason is that the
function minimized is (EK � EL)2 [7,3]. This function varies
more smoothly than (EK � EL) in the vicinity of a conical
intersection and is more suitable for quasi-Newton optimi-
zation methods [3].

In our model, the ‘in solution’ energies and wavefunc-
tions of the solute intersecting states are obtained using
the averaged solvent electrostatic potential from molecular
dynamics data method (ASEP/MD) [16–20].

As in QM/MM methods, in ASEP/MD, the energy and
state function of the solvated solute molecule are obtained
by solving the effective Schrödinger equation:

H jW ¼ ðH þ H ÞjW ¼ EjW ð4Þ
QM QM=MM
Where HQM is the ‘in vacuo’ solute molecular Hamiltonian
and where the solute–solvent interaction term, HQM/MM

takes the following form:

HQM=MM ¼ H elect
QM=MM þ H vdw

QM=MM ð5Þ

H elect
QM=MM ¼

Z
dr � q̂ � hbV Sðr; qÞi ð6Þ

where q̂ is the solute charge density and the brackets denote
a statistical average. The term hbV SðrÞi is the averaged elec-
trostatic potential generated by the solvent at the position
r, and is obtained from MD calculations where the solute
molecule is represented by the charge distribution q and
a geometry fixed during the simulation. For details about
the calculation of hbV SðrÞi, see references [16,17]. The term
H vdw

QM=MM is the Halmiltonian for the van der Waals interac-
tion, in general represented by a Lennard–Jones potential.
This term is calculated averaging its value over all the sol-
vent configurations selected during the MD simulation. It
depends only on the nuclear coordinates and hence has
no effect on the solute wave function but it contributes to
the final value of the gradient and Hessian.

The scheme of the process followed to locate CI or ISC
of molecules in solution using ASEP/MD is shown in
Fig. 1. First, one must obtain an in vacuo set of charges
for the solute molecule in its initial state, generally the
ground state. These charges are then used as input for an
MD simulation of the solute–solvent molecules, the
remaining solute (LJ coefficients) and solvent (charges
and LJ coefficients) parameters are obtained from the liter-
ature. N representative solvent configurations (N usually
taken between 500 and 1000) are selected from the MD
simulation. From these configurations the averaged solvent
potential generated by the solvent in the volume occupied
by the solute, hbV SðrÞi, is calculated. Next, one solves the
electronic Schrödinger equation of the solute molecule in
the presence of the averaged perturbation generated by
the solvent. The different energies and gradients appearing
in Eq. (3), that now include explicitly the solvent effect,
together with a new set of solute charges are calculated
and the gradient ~f is obtained. Finally, a new solute geom-
etry is obtained by using a Newton-Raphson method. In
this point we have two possibilities depending on whether
the solvent is in an equilibrium or non-equilibrium situa-
tion. In the first case the solvent must become equilibrated
with the new solute charge distribution and hence a new
MD must be performed. Although strictly speaking it is
necessary to perform a MD calculation for each new solute
geometry, this is a very inefficient procedure. We have ver-
ified that it is computationally more efficient to perform
several steps of the CI searching procedure before equili-
brating again the solvent. We update the solvent structure
only after 10–20 iterations of the search procedure.

In the case of non-equilibrium conditions, the CI is
located for a fixed solvent structure. One supposes that
during an electron transition the Franck–Condon principle
is applicable and the solvent nuclei remain fixed during the
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Fig. 1. CI and ISC location scheme.
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transition, that is, the solvent is in equilibrium with the
minimum energy structure of the solute ground state.

In this scheme we introduce furthermore the following
approximations:

(1) Electrostatic and Lennard–Jones (LJ) solute–solvent
contributions are treated in different ways. Thus,
while the electrostatic component is introduced as a
perturbation into the solute Hamiltonian, and hence
it affects both the energy and the wavefunction, it is
assumed that the LJ contribution depends only on
the nuclear coordinates, and hence, for a given solute
geometry, it is a constant added to the energy. This
component does not affect the solute wavefunctions.

(2) It is supposed that the LJ parameters are the same in
the ground and excited states, in consequence their
contribution to ~gKL cancels out. The LJ component
only contributes to the excited state gradient. On
the contrary, the electrostatic contribution influences
the calculation of the gradient difference, ~gKL, of the
derivative coupling,~hKL, and of the excited state gra-
dient, $EK.

For in solution systems, the CI are defined on free
energy surfaces. Because of this, once the geometry of the
CI has been located with ASEP/MD, one must determine
the free energy difference between the CI point and a refer-
ence state, generally the Franck–Condon state or the min-
imum of the ground state. The standard free-energy
difference between initial (reference) and final (CI) states
in solution can be written as the sum of two terms [20]

DGdiff ¼ DEsolute þ DGint; ð7Þ
where

DEsolute ¼ Ef � Ei ¼ hwf jH QMjwfi � hwijHQMjwii ð8Þ

is the ab initio difference between the two quantum
mechanics, QM, states calculated using the in vacuo solute
molecular Hamiltonian, bH QM, and the electronic wave-
functions obtained in solution.

In Eq. (7), DGint is the difference in the solute–solvent
interaction free energy between the two QM states. The
free-energy perturbation method [21] was used to deter-
mine this energy. The solute geometry was assumed to be
rigid and a function of the perturbation parameter (k) while
the solvent was allowed to move freely. When k = 0 the sol-
ute geometry and charges and the solute–solvent corre-
spond to the initial state. When k = 1 the charges, LJ
parameters, and geometry are those of the final state. For
intermediate values a linear interpolation is applied. A
value of Dk = 0.05 was used. That means that a total of
21 separate molecular dynamics simulations were carried
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out to determine the free energy difference. To test the con-
vergence of the calculation, the difference in interaction free
energies calculated forwards and backwards was
compared.

3. Computational details

We have studied the S0/S1
1(n! p*) crossing of s-trans-

acrolein in solution considering equilibrium and non-equi-
librium conditions. The states were described using the
CASSCF level of theory. In previous Letters [22,23] it
was shown that the inclusion of the dynamic correlation
component through CASPT2 calculations was compulsory
if one desired to reproduce the transition energy. However,
in the acroleine case this component does not modify the
solvent shift [23] and a good description of the solvent
effects can be obtained at CASSCF level. The complete
active space was spanned by all the configurations arising
from six valence electrons in five orbitals (6e/5o). All quan-
tum calculations were performed with the program GAUS-

SIAN 98 [24] and using the 6-31G* basis set. The initial
geometry for acrolein was obtained by CASSCF optimiza-
tion both in vacuum and in solution with the aforemen-
tioned basis set. In all the cases we take as initial point of
the CI search procedure, the geometry of the Franck–Con-
don (FC) excitation, i.e., the geometry of the ground state
minimum.

To locate the CI we used a Newton-Raphson method
where the increment of geometry h is defined by

h ¼ �
Xn

i¼1

vt
igvi

bi

ð9Þ

here, vi and bi are the eigenvectors and the eigenvalues,
respectively, of the Hessian matrix and g the gradient de-
scribed previously. To update the approximate Hessian,
we employed the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) algorithm. We consider that the CI has been
reached when the energy difference between the two states
is lower than 0.002 a.u. (�1.3 kcal/mol) and the energy and
geometry are stabilized. The minimal energy CI (MECI) is
the lowest energy point that fulfils these conditions. In
solution the results are affected by statistical uncertainty
and we take averaged values of the last five ASEP/MD
cycles.

The MD calculations were performed using the program
MOLDY [25]. A total of 251 molecules were simulated
Table 1
Lennard–Jones parameters

r (Å) e (kcal/mol)

H2–H3–H4 2.42 0.030
C2–C3 3.55 0.076
C1 3.75 0.105
O 2.96 0.210
H1 2.42 0.015
O (W) 3.15 0.608
H (W) 0.00 0.000
with fixed intramolecular geometry by combining LJ inter-
atomic interactions (see Table 1) with electrostatic interac-
tions. The solvent was represented by 250 TIP3P [26,27]
molecules with fixed intramolecular geometry in a cubic
box of 18.7 Å side. Periodic boundary conditions were
applied, and spherical cutoffs were used to truncate the
molecular interactions at 9.0 Å. A time step of 0.5 fs was
used. The electrostatic interaction was calculated with the
Ewald method. The temperature was fixed at 298 K by
using a Nosé–Hoover thermostat. Each MD calculation
simulation was run for 75 ps (25 ps equilibration, 50 ps
production).

4. Results

As example of application of the method developed in
previous sections, we proceeded to localized the S0/S1
1(n! p*) CI of s-trans-acrolein. In vacuum, the MECI is
placed about 20.0 kcal/mol higher than the S1 minimum
and 1.6 kcal/mol over the S1 FC point, see Fig. 2 and Table
2. Our results are similar to those obtained by Reguero
et al. [8] (values in parentheses) with bond distances for
the MECI of 1.49 (1.49), 1.30 (1.30) and 1.39 (1.40) Å for
the C@C, C–C and C@O bonds, respectively. The energy
difference between the two intersecting states is in our case
of only 0.1 kcal/mol (2.0 kcal/mol).

The geometry of the FC and MECI calculated for the in
vacuo system are displayed in Fig. 2. The comparison
between the MECI geometry and the Franck–Condon
point evidences the interchange between single and double
bonds: in the CI the C3@C2 and C1@O distances increase
while the C1—C2 distance decreases. The rupture of the
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Fig. 2. (a) FC geometry in vacuo and in solution (in parenthesis). (b) The
CI S0/S1 geometry in vacuo and in solution (in parenthesis). Distances in
Å.



Table 2
Absolute (in a.u.) and relative (in kcal/mol) energies and its components in
different points of the S1 excited state surface in vacuum and in solution

Vacuum DE (vac) DGdiff DEsolute DGint

S0 minimum �190.8235 0.0 0.0 0.0 0.0
S1

1(n! p*) minimum �190.7081 72.4 75.1 71.1 4.0
S1

1(n! p*) FC �190.6788 90.8 95.8 89.7 6.1
S0/S1

1(n! p*) CI �190.6762 92.4 94.5 91.3 3.2
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Fig. 4. Evolution during the search procedure of the S0 and S1 energies (in
hartree) in solution in non-equilibrium (thin lines, continuous and dotted,
respectively) and in equilibrium conditions (thick lines, continuous and
dotted, respectively).
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C3@C2 double bond facilitates the rotation of the C1–C2–
C3–H3 angle as far as 100�. At the same time there is a flux
of charge from the C3@C2 bond to the C1@O bond, conse-
quently the dipole moment value increases in about 146%
with respect to the FC value, see Table 3.

Next, we calculated the CI in aqueous solution suppos-
ing an equilibrium situation. Fig. 3 displays the variation of
the energies of the two states involved along the search pro-
cedure. The solvent originates a solvent shift in the absorp-
tion band of 5.0 kcal/mol very close to the results obtained
with larger basis sets [22] and to the experimental [28]
value, 4.5 kcal/mol. It also modifies the relative position
of the CI that now is 1.3 kcal/mol under the S1 FC point
and 19.04 kcal/mol over the S1 minimum. Consequently,
the conical intersection is easier to reach in solution than
in gas phase. There are no appreciable differences between
the bond distances obtained in vacuo and in solution con-
ditions. As expected, the solvent increases the dipole
moment values but more so in FC point than in the CI
and the S1 minimum, consequently the variations of the
dipole moment on the S1 surface are lower in solution than
Table 3
Dipole moment values in Debyes

Vacuum Solution

S0 minimum 2.88 3.94 ± 0.04
S1

1(n! p*) minimum 1.55 1.84 ± 0.08
S1

1(n! p*) FC 1.05 1.87
S0/S1

1(n! p*)
S1

1(n! p*) 2.59 3.06 ± 0.05
S0 1.78 2.13 ± 0.08
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Fig. 3. Evolution during the search procedure of the S0 and S1 energies (in
hartree) in vacuum (thin lines, continuous and dotted, respectively), and in
solution (thick lines, continuous and dotted, respectively).
in gas phase. This fact explains the small influence of the
solvent on the relative stability of this CI.

In acrolein, the molecular shape does not vary apprecia-
bly during the evolution from the FC to the CI geometries.
In these conditions it is possible to reach the CI keeping the
solvent structure fixed (non-equilibrium conditions)
although now it is somewhat more complicated to localize
the CI, see Fig. 4. The CI is now 3.2 kcal/mol over the FC
point, that is, the CI is destabilized 4.5 kcal/mol with
respect to the equilibrium solvation situation. The effect
of non-equilibrium solvation on the geometry follows a
trend similar to the previously obtained with the solvent
in equilibrium: the C1=O distances increases while the
C3=C2 and C1–C2 distances decrease. The bond distances
are now 1.478 Å (C3=C2), 1.411 Å (C1=O) and 1.287 Å
(C1–C2).

5. Conclusions

A new method to locate CI and ISC in solution has been
presented, the method permits to combine high level quan-
tum calculations in the solute description with a detailed
description of the solvent structure obtained from molecu-
lar dynamics simulations. Furthermore, the method can be
used with the solvent in equilibrium and non-equilibrium
conditions. As an example of application we have studied
the solvent effect on the S0/S1

1(n! p*) CI in s-trans-acro-
lein. This crossing is not the most probable path of photo-
chemical de-excitation for acrolein, [29] because it is
located slightly above the FC point, but it can serve to
illustrate the solvent effect on free energy surface crossings.

As expected, the solvent polarizes the molecule and
increases the dipole moment values in the different geome-
tries: FC, CI and ground and excited state minima. The dif-
ferential solvation between the ground and excited state
produces a blue shift on the absorption band of 5.0 kcal/
mol. The variations of the dipole moment along the S1 sur-
face are small, consequently the solvent has only a small
effect on the relative position of the MECI. In equilibrium
solvent conditions, the CI is slightly easier to reach than in
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vacuo, however when one fixes the solvent (non-equilib-
rium solvation) the MECI is destabilized by almost
4.5 kcal/mol.
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