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Abstract

ASEP/MD is a computer program designed to implement the Averaged Solvent Electrostatic Potential/Molecular Dynamics
(ASEP/MD) method developed by our group. It can be used for the study of solvent effects and properties of molecules in their
liquid state or in solution. It is written in the FORTRAN90 programming language, and should be easy to follow, understand,
maintain and modify. Given the nature of the ASEP/MD method, external programs are needed for the quantum calculations and
molecular dynamics simulations. The present version of ASEP/MD includes interface routines for the GAUSSIAN package,
HONDO, and MOLDY, but adding support for other programs is straightforward. This article describes the program and its
usage.

Program summary

Title of program: ASEP/MD

Catalogue identifierADSF

Program Summary URLhttp://cpc.cs.qub.ac.uk/summaries/ADSF

Program obtainable from:CPC Program Library, Queen’s University of Belfast, N. Ireland

Computer for which the program is designeithas been tested on Intel-based PC and Sun

Operating systems under which the program has been te®ed:Hat Linux 7.2 and SunOS 5.6

Programming language usedzORTRAN90
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Y This paper and its associated computer program are available via the Computer Physics Communications homepage on ScienceDirect
(http://www.sciencedirect.com/science/journal/00104655
* Corresponding author.
E-mail addressmaguilar@unex.es (M.A. Aguilar).

0010-4655/$ — see front mattét 2003 Elsevier B.V. All rights reserved.
doi:10.1016/S0010-4655(03)00351-5


http://www.elsevier.com/locate/cpc
http://cpc.cs.qub.ac.uk/summaries/ADSF
http://www.sciencedirect.com/science/journal/00104655

I.F. Galvéan et al. / Computer Physics Communications 155 (2003) 244—-259 245

Method of solution:A non-traditional QM/MM method based on the mean field approximation was developed where a classical
molecular dynamics simulation is coupled with a quantum calculation. The average electrostatic potential generated by the
solvent over the solute is calculated from the simulation and introduced into the quantum calculation as an external field. This
process can be performed iteratively. Standard external programs are used for the molecular dynamics simulations and for the
quantum calculations. The present program acts as an interface and controls the flow of the calculation.

Restrictions on the complexity of the probleAt:present, only pure liquids and binary dilute solutions (a single solute molecule)

can be studied. For the molecular dynamics only MOLDY is implemented, while GAUSSIAN and HONDO are available for
the quantum calculations. Restrictions of the aforementioned programs apply.

Typical running time: Running time depends on the nature of the chemical system and the options passed to the external
programs, which are usually by far the longest part of the calculations.

Unusual features of the prograntJses SYSTEM and GETARG calls.

0 2003 Elsevier B.V. All rights reserved.

1. Introduction

Quantum Mechanics/Molecular Mechanics (QM/MM) methods [1] are now widely used in the study of
molecules in solution. The main advantage of these methods is that they combine a quantum description of
the solute, allowing chemical processes to be studied, with a detailed description of the solvent, obtained from
simulation techniques. In most QM/MM methods the solute Schrddinger equation has to be solved for each solvent
configuration, which implies several thousand quantum calculations. This imposes a limitation on the quality of the
quantum description of the solvent (basis set and calculation level) and on the significance of the results (number
of configurations considered).

In previous papers [2] we have developed a non-traditional QM/MM method that makes use of the mean
field approximation [3] (MFA). In this approximation, the average value of the energies of the different solute—
solvent configurations is replaced by the energy of the average configuration. Our method is based on the
calculation of the Average Solvent Electrostatic Potential (ASEP) from Molecular Dynamics data (MD); this
average potential is introduced into the molecular Hamiltonian of the solute and the Schrddinger equation is solved.
This approximation, named ASEP/MD, reduces drastically the number of quantum calculations from several
thousands to half a dozen, and introduces no significant inaccuracies [3] in the solute—solvent interaction energy or
the solute dipole moment. This reduced number of quantum calculations permits one to use higher quality methods,
while having an adequate sampling of the solvent configurations through the molecular dynamics simulations.

This paper presents of the computer program developed to implement our method. The quantum calculations and
the molecular dynamics simulations are performed by external programs, intentionally left out of the present im-
plementation. This dependence on external programs allows the users to employ whatever program they are accus-
tomed to or that is best suited to their needs, although specific subroutines for the purpose may have to be written.

2. Method

The main characteristics of the ASEP/MD method have been discussed elsewhere [2]. The following is a short
description. As in traditional QM/MM methods, in ASEP/MD the energy and wavefunction of the solvated solute
molecule are obtained by solving the effective Schrédinger equation

(Hom + Hommm ) 1¥) = E|W). (1)
The interaction termﬁQM/MM, takes the following form:

Hommm = HSm + B3 m- )

HSNowm = / p(Vs(r; p))dr, 3
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wherep is the solute charge density, obtained from a quantum calculation, and théWgimp)) is the average
electrostatic potential generated by the solvent (ASEP) at the positiand is obtained from MD calculations

where the solute molecule has fixed geometry and charge distribprtiethe angle brackets denote a statistical
average. The terrﬁ(‘g",\’ﬂ"/”MM is the Hamiltonian for the van der Waals interaction, usually represented by a Lennard-
Jones potential. Since the solvent structure, and hence the ASEP, is a function of the solute charge density, Egs. (1)
and (3) have to be solved iteratively. In general, only a few cycles of quantum calculation/molecular dynamics
simulations are needed for convergence.

In order to facilitate its implementation in a standard quantum program package, the ASEP is represented be
means of a set of point charges. The method used to obtain the ASEP and the point charges that approximate it is
as follows. First a three-dimensional grid of points is created inside the volume occupied by the solute. Then, for
every solvent configuration considered, the electrostatic potential created by the solvent at these points is calculated
and averaged over all the configurations. The solvent charges inside a certain cut-off radius around the solute are
explicitly kept (their values divided by the total number of configurations considered) and, to avoid having too
many charges, they are grouped together if the distance between them is less than a certain value. The electrostatic
potential created by these explicit charges is subtracted from the one calculated before. In this way one obtains the
contribution of the solvent molecules placed outside the cut-off radius. We named this contribution ASEP1. Finally,
an external set of point charges, arranged in two spherical shells, is obtained such that the potential generated by
them is the closest to the calculated ASEP1. The positions of these charges are set previously and their values are
obtained through a least squares fit, so that
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is minimized, wheréV; is the ASEP1 calculated at pointind V! is the potential generated by the fitted charges

at the same poing, is the value of the chargeandr,; is the distance between chargand pointi. These point

charges are then introduced into the solute Hamiltonian. In this way, the solvent is represented by two sets of point

charges, one closer to the solute and keeping some information about the solvent structure and a second, farther

from the solute, completing the fit to the ASEP. In the currentimplementation the molecular dynamics is performed

with the MOLDY program [4] and the quantum calculation with the GAUSSIAN [5] or HONDO [6] packages.

In some cases it is desirable to make a calculation with polarizable solvent, for example to study electron
transitions in the solute, which are too rapid to allow a reorganization of the solvent nuclei but permit the
polarization of the electron clouds of the solvent molecules. In this case, instead of performing a full polarizable
molecular dynamics—which would be too expensive—the polarization is calculated after the simulation is done,
using the obtained solute—solvent configurations. In each configuration, the induced dipole moment is calculated
for every solvent molecule,

,u; =uo; E;, (6)

wherey; is the induced dipole moment of moleculey; its polarizability tensor, and; thetotal electric field in
the center of mass of the moleculeéncluding contributions from the solute and the charges and induced dipoles of
the other solvent molecules. Since the dipole moment on each molecule depends on the dipole moments on the rest
of molecules, the calculation is done iteratively until convergence. Once the dipole moments have been obtained,
the ASEP is calculated as above.

To perform a geometry optimization of the solute with the ASEP/MD method [7] we use the free energy gradient
(FEG) method [8], in which the forces on the nuclei are

G (x) _<8V(x)>

F(x)=—
x) 0x 0x

(7)
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and the Hessian

2
Hx) = dF(x) :<8 Vix)

0x dx2

>— B(F () — (F(x0))), (8)

where G (x) is the free energy associated with the solute geometry (r) the potential energy of the solute
including the interaction with the solvent molecules, ghe: 1/RT. The last term in Eq. (8) is related to the
thermal fluctuation of the force and, since the Hessian is not essential for geometry optimization, we neglect it and
assume

A(V(x))

F()C):— 9 ) (9)
X
V)
H(X)——?, (10)

where we replace the statistical average of the gradient by the gradient of the “average configuration” given by
the ASEP, and similarly for the Hessian. Once the gradient and Hessian have been obtained, a standard geometry
optimization (steepest descent, Newton-like methods, RFO) is performed in each cycle of the process.

3. Program description

The ASEP/MD program is written with readability in mind. Since most processor and memory consuming tasks
are those performed by the external programs (quantum calculations and molecular dynamics simulations), code
optimization was considered as only secondary. Once compiled and linked, the program is available as a single
executable file. To launch ASEP/MD the user needs to provide a general input file and “template” files, which will
be used as input for the external programs (obviously, these external programs must have been installed previously).
The external programs currently supported are GAUSSIAN and HONDO for quantum calculations and MOLDY
for molecular dynamics simulations.

Fig. 1 shows the simplified flow chart of the program. The most important steps are those in bold face: molecular
dynamics simulation, calculation of the ASEP, and the quantum calculation.

In a typical run, the first thing the program does is to read the values of some variables from the input file
supplied by the user. It then reads the system definition from the molecular dynamics template (nature and number
of solvent and solute molecules, interaction potential, etc.). With this information, and if needed, the external
quantum calculation program is called to perform a calculation of the isolated solute molecule, using the options
given in the quantum calculation template (method, basis set, etc.). The output of this calculation is read to extract
the energy, dipole moment and atomic charges of the smwacua

Now the main ASEP/MD cycle is carried out. The solute and solvent geometry and atomic charges are inserted
into the molecular dynamics input file and the appropriate program is called to perform the simulation. Next, a
set of solvent—solute configurations is read from the output of the molecular dynamics program and the average
electrostatic potential created by the solvent over the solute (ASEP) is calculated from them, as well as several
interaction energies. The ASEP is then approximated by a set of point charges. A new quantum calculation, this
time with the external point charges representing the solvent, is performed. The output gives again the energy,
dipole moment, and atomic charges of the solute. A check for convergence is made and, if it has not been reached,
the solute charges are inserted again into the molecular dynamics input file and the main cycle starts anew.

So far, the program flow has been described when a basic calculation is requested. There are two other
main types of calculations which require some modifications of this scheme: polarizable solvent and geometry
optimization.
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Fig. 1. Simplified flow chart of the ASEP/MD program.
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3.1. Polarizable solvent

In the current implementation [2], the solvent polarization calculation is performed after an equilibrium sample
of solvent—solute configurations has been obtained with a non-polarizable solvent. Once a normal run of the
program, as described above, has finished, another calculation is carried out. This time no more molecular
dynamics simulations are made, but the solvent configurations are read from the final simulation of the previous
run. An additional input is given with the permanéntvacuoatomic charges of the solvent molecule and its
polarizability tensor. Then, for each one of the configurations, all the solvent molecules are polarized by the solute
charge distribution and by the other solvent molecules. The calculated ASEP now includes contributions from the
permanent charges and the induced dipole moments of the solvent molecules. This potential is approximated by
the two sets of point charges explained above and introduced into the quantum calculation. The charge distribution
of the solute is used to obtain the solvent polarization again, and this process is repeated until convergence.

This whole calculation can performed for different solute electronic states, keeping always the same set of sol-
vent configurations. In this way, it is possible to study the solvent effect on electronic transitions in the solute, which
take place without appreciable reordering of the solvent nuclei, but with a major response of the solvent electrons.

3.2. Geometry optimization

The geometry optimization method implemented in this program is based on the Free Energy Gradient (FEG)
method [8], in which the effective forces on the nuclei are taken as the average force over a set of equilibrium
solvent—solute configurations. Once the molecular dynamics simulation has been made and the ASEP obtained,
a geometry optimization calculation is performed using the rational function optimization (RFO) method [9]. In
this way, a new solute geometry is obtained, which is introduced into the next molecular dynamics simulation. The
process is repeated until convergence.

The gradient and Hessian, needed for the optimization process, are given by the quantum calculation program,
but the appropriate van der Waals components have to be added. These components are calculated by the ASEP/MD
program as an average over all the solute—solvent configurations considered.

There are a number of options affecting the optimization method used. In each cycle of the ASEP/MD process,
the optimization may be complete (a stationary point is found and this geometry is used in the next cycle) or partial
(a fixed number of optimization steps is performed, and while the geometry used in the next cycle is not a stationary
point, it is closer to one). Other options are related to the algorithm of the optimization procedure.

4. Program organization

The ASEP/MD source code is divided into different files, each of them containing subroutines and definitions
grouped according to the subject. The program uses modules to make variables and arrays globally available. The
following is a short description of the contents of the different files:

Main.f90
This file contains the main program, global definitions, and subroutines related directly to the main program.

Module definitions.

ASEP_MD: This is the main program that controls the flow of the calculations.

Leer Ent r ada: This subroutine reads the input provided by the user.

Leer Cont i nuaci on: If a calculation is resumed, this subroutine reads the “continue” file.
Escri bePri n: Writes the output of the main program.
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Execute.f90

The subroutines in this file are related to the external programs used by ASEP/MD to perform the quantum
mechanics calculations and molecular dynamics simulations. Most of these subroutines are program-independent:
they simply call the appropriate subroutine or process depending on the specific program used.

Leer Si st enm: Calls another subroutine to read the system definition (solute, solvent, force field, etc.)
Leer Abi ni ti o: Calls another subroutine to read the output of a quantum calculation.

Ej ecut ar Abl ni t i o: Runs the appropriate quantum calculation through a SYSTEM call.

Ej ecut ar Di nami ca: Runs the appropriate MD simulation through a SYSTEM call.

Leer Conf i g: Extracts a solute—solvent configuration from the output of the MD program.

MoldySubroutines.f90
The subroutines included in this file deal with the input and output of the molecular dynamics program MOLDY.

— Leer Cont r ol Mol dy: Reads the MOLDY control file for some necessary parameters.
— Leer Si st enaMbl dy: Reads the system definition from the MOLDY input file.
— Modi fi car Mol dy: Modifies the MOLDY input files to run a new simulation.

GaussianSubroutines.f90

The subroutines included in this file deal with the input and output of the quantum calculation program
GAUSSIAN.

— Modi fi car Gaussi an: Modifies the GAUSSIAN input file to perform a new quantum calculation.
— Leer Sal i daGaussi an: Reads the output of GAUSSIAN.

HondoSubroutines.f90
The subroutinesincluded in this file deal with the input and output of the quantum calculation program HONDO.

— Modi f i car Hondo: Modifies the HONDO input file to perform a new quantum calculation.
— Leer Sal i daHondo: Reads the output of HONDO.

Calculations.f90

This file is the core of the program. It contains the subroutines that calculate the average solvent electrostatic
potential and the point charges that reproduce it. It also contains some other auxiliary subroutines.

— Posi ci onesCar gas: Gets the positions of the outer point charges representing the average solvent
electrostatic potential.

— Cal cul ar Car gas: This subroutine calls other subroutines to calculate the values of the point charges that
will represent the solvent in the quantum calculations.

— Punt osPot enci al : Calculates a grid of points inside the solute in which the ASEP will be calculated.

— Cal cul ar Pot enci al : Calculates the electrostatic potential and interaction energies for a given solute—
solvent configuration.

— Reduci r Capa: Reduces the number of point charges in the solvent representation.



I.F. Galvéan et al. / Computer Physics Communications 155 (2003) 244—-259 251

— Cal cul ar Canpo: Calculates the fluctuations of the solvent electric field.

— A ust eLagr ange: Fits the outer point charges by the Lagrange multipliers method.

— Resol ver LU: Solves a system of linear equations by the LU factorization method.

— G rar Mol ecul a: Rotates a molecule (solute or solvent) to orient it along its main inertia axes.

Optim.f90

This file contains all the subroutines needed to perform a geometry optimization.

— Optinm zar Geonet ri a: This is the main subroutine for geometry optimization. It controls the flow of the
program in this section.

— Cal cul ar G adHessPot : Calculates the contribution of the van der Waals potential to the gradient and
Hessian.

— Buscar M ni no: Performs a linear search to find a minimum.

— Ener gPunt o: This is a function that returns the total energy for a given solute geometry.

— Act ual i zar Hessi ana: Updates the Hessian using an appropriate formula.

— Cal cul ar | ncr enrent o: Calculates the increment to obtain the new solute geometry.

— Escri beOpt i m Writes output related to the optimization process.

5. Usage

The compilation of this program is straightforward. Just feed the names of the different source files to the
compiler. For example, withgf 90 use (this is a single line):

[user @ocal host]$ pgf90 Main.f90 Execute.f90 Ml dySubroutines.f90
Gaussi anSubrouti nes. f90 HondoSubrouti nes. f90 Cal cul ati ons. f90
Optimf90 -0 asepnd

No makefile or configure script is needed.

Once the program has been successfully compiled and linked, the resulting binary file can be executed. It accepts
a single command-line option: the name of the global input file. This file contains the values of the different
options affecting the calculation. The input is formatted as a namelist called Input, whose syntax may depend on
the compiler and platform.

In addition to the global input file, the user must have access to suitable external programs for the quantum
calculations and for the molecular dynamics simulations. For these external programs the user must supply template
files from which ASEP/MD can build the appropriate input files as needed. Currently, there are some limitations
on the options and units that can be used in the template files, but they can be easily circumvented by modifying
the launching scripts or the parser subroutines. Future versions may eliminate these limitations.

As the calculation progresses, input and output files for the external programs will be created for each cycle of
the process. All files will be created in the current working directory, so it is recommended to create a dedicated
directory for each calculation and run the program from there.

5.1. Input

The following is a short description of the different options in thgput namelist. For each option, its type
(string, integer, or float) is indicated:
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— Di r Dynam cs: String. Must point to the directory where the molecular dynamics binaries reside, without a
trailing slash.

— ProgAbl ni ti o: String. Location of a script or binary file that will run the quantum calculation program.

It will be launched asProgAbl nitio input-file output-file’, sothe useris advised to write a
script that runs the program in this way. The value of this option should include the full path.

— ProgDynami cs: String. Location of a script or executable that will run the molecular dynamics program.
It will be launched asPr ogDynarmi cs i nput-file output-file’, sothe useris advised to write a
script that runs the program in this way. The value of this option should include the full path.

— Abl ni ti o: String. This option specifies the program that will be used for quantum calculations. Valid values
are ‘GAUSS’ for GAUSSIAN and ‘HONDO' for HONDO.

— Dynani cs: String. This option specifies the program that will be used for molecular dynamics simulations.
Since the only molecular dynamics program supported in this version is MOLDY, the value must be ‘MOLDY’

— Mai nQut put : String. Name of the file where the general output will be written in text format.

— Cont Fi | e: String. Name of the file where the resume information will be written to and/or read from.

— Abl ni ti oFi | e: String. Name of the template file for the quantum calculation input. This file will be read
and used as a template for each quantum calculation performed. The system definition (solute and external
point charges) will be added by ASEP/MD as needed, so only such options as basis set and quantum method
have to be specified here. This file should be in the format expected by the quantum calculation program used.
It will not be overwritten.

— Abl ni ti oCut put : String. This is the generic name for the quantum calculation output files. The name will
be modified for each cycle by appending ‘.cic.#', where # is the cycle number.

— Dynamni csFi | e: String. Name of the template file for the molecular dynamics input. This file will be read
and used as a template for each molecular dynamics simulation performed. This file should be in the format
expected by the molecular dynamics program used, it will not be overwritten.

— Dynami csCQut put : String. This is the generic name for the molecular dynamics output files. The name will
be modified for each cycle by appending ‘.cic.#', where # is the cycle number.

— I nitial Dynam cs: String. Sometimes the user may want to perform an initial molecular dynamics
calculation with different conditions (smaller time step, lower temperature, etc.) to equilibrate the system.
In that case the name of the input file for this simulation is specified here. If this option is left blank, no such
equilibration dynamics will be performed.

— Ener gyConv: Float. Value of the convergence criterium for the energy. If the solute energy difference
between two consecutive cycles is less tkaer gy Conv, the energy is considered as converged.

— Char gesConv: Float. Value of the convergence criterion for the solute atomic charges. If the maximum
difference in the atomic charges of the solute between two consecutive cycles is leSsdingres Conv, the
solute atomic charges are considered to have converged.

— MaxDi f f Char ges: Float. Maximum allowed variation in the solute atomic charges from cycle to cycle. The
charges’ variation is damped if it is larger thislaxDi f f Char ges.

— Char gesType: String. Type of atomic charges calculated for the solute. Allowed values are: ‘MUL' for
Mulliken type, ‘CHE’ for CHELP calculated by the quantum program, ‘POT’ for charges fitted to the
electrostatic potential by the ASEP/MD program.

— Maxl| t er : Integer. Maximum number of molecular dynamics + quantum calculation cycles. If this number is
reached, the program terminates.

— Max| t er Pol : Integer. Maximum number of solvent polarization cycles if a solvent polarization calculation
is requested.

— St art: Integer. Initial cycle for the ASEP/MD calculation. 8t art = 0, the program will start with a
quantum calculation of the isolated solute. For other values, the file specifiemhinFi | e should contain
valid data for the previous cycles.
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Coupl i ng: String. Type of coupling between solute and solvent. Allowed values are: ‘NON' for no coupling,
a single quantum calculation for the solute in solution will be performed; ‘PAR’ for partial coupling, several
cycles are made until convergence is achievellbx| t er is reached; ‘'TOT’ for full coupling, the solute is
copied into the solvent (this is only for pure liquids).

— Pol ari zat i on: String. "YES' if a solvent polarization calculation should be made; ‘NO’ otherwise.

— DoDynami cs: String. The ASEP/MD cycles start with a molecular dynamics simulation, then a quantum
calculation, and then another cycle begins. If a previous run is being resumed and the next molecular dynamics
simulation has already been done, setu@Pynani cs = ‘NO’ will skip the first molecular dynamics run
and start with the following quantum calculation. This only skips file molecular dynamics simulation
needed. The following cycles will be made normally. If all simulations are to be perforbud®y,nani cs
should be ‘YES'.

— NumConf i g: Integer. Number of solute—solvent configurations considered for obtaining the ASEP.

— Numl ni Conf i g: Integer. First configuration to consider in obtaining the ASEP.

— Radi i Fact or: Float. Factor by which the van der Waals radii of the solute atoms will be multiplied when
getting the grid of points to calculate the ASEP.

— &i dDi v: Integer. Number of points in each dimension where the ASEP will calculated. The maximum
number of grid points is thur i dDi v [3], but it will typically be far less.

— Fi r st Shel | : String. If ‘YES’, the charges of the solvent molecules closest to the solute will be considered
explicitly. If ‘NO’, they will not.

— Shel | Radi us: Float. Cut-off radius around the solute beyond which solvent molecules will not be
considered explicitly.

— Proxi mi ty: Float. Minimum distance between point charges. If two charges are closer than this value, they
will be added together.

— Per nChar ges: String. Name of the file with the solvent atomic charges and polarizability. This is only used
when a solvent polarization calculation is performed.

— I ndDi p: String. Type of calculation for the induced dipole moments in the solvent molecules. ‘NOR’ triggers
a one-pass calculation, ‘CON’ triggers a self-consistent polarization process until convergence.

— MaxI t er Opt : Integer. Maximum number of optimization iterations within each ASEP/MD cycle. If
Maxl t er Opt = 0, optimization is turned off. If this number of iterations is reached, the optimization ends,
but the ASEP/MD program continues normally.

— & adi ent Conv: Float. Convergence criterion for the gradient in the optimization process. When the
gradient’s magnitude is less than this value, the optimization ends.

— M nSt ep: Float. Convergence criterion for the geometry variation in the optimization process. If the
magnitude of the predicted change in geometry is less than this value, the optimization ends.

— Max St ep: Float. Maximum allowed change in the geometry between iterations of the optimization process.
If the geometry change is larger, it will be damped accordingly.

— Cal cHessi an: Integer. Number of optimization iterations after which the Hessian will be calculated anew
by the quantum calculation program; in other iterations it will just be updated by the appropriate formula. If
Cal cHessi an = 1, the Hessian will be calculated in every iteratiorCdfl cHessi an = 0, the Hessian will
never be calculated; the identity matrix will be taken as the initial Hessian and updated in following iterations.
If Cal cHessi an = 10, for example, the Hessian will be calculated again every 10 cycles.

— Li near Sear ch: String. ‘'YES’ turns on the linear search algorithm to locate a minimum of the energy in the

search direction. ‘NO’ turns it off.

The input file can be specified as an argument when running the program. If no extension is given, ‘.dat’ will be
assumed and appended to the name:
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— asepnd will launch ASEP/MD and ask for an input file.
— asepnd wat er will launch ASEP/MD usingnvat er . dat as input.
— asepnd wat er. i nput will launch ASEP/MD usingvat er . i nput as input.

5.2. Output

The output of this program, stored Mai nCut put , will show, for each cycle of the ASEP/MD process,
the values of the solute—solvent interaction energy, solvent dipole moment, and other useful energies. A short
description of this output follows:

MM ENERG ES: Energies and properties calculated from the MD data only; the solute and the solvent are
treated classically. The MM solute—solvent interaction energy is averaged over all the considered configurations
and split into three components.

— Charge(sol ute)-charge(sol vent) interaction: Interaction energy between the permanent
charges of the solvent and the atomic charges of the solute.

— Di pol e(sol vent) -charge(sol vent) interaction: Interaction energy between the induced
dipoles of the solvent and the atomic charges of the remaining solvent molecules. This energy will only be
non-zero if a polarizable solvent calculation has been made.

— Van der Waal s interaction:VanderWaals interaction energy between solvent and solute, calculated
by using the same potential (typically Lennard-Jones) given in the molecular dynamics input.

— Electric field fluctuation: Fluctuation of the electric field at the solute’s center of mass,
calculated as the difference between the mean squared field and the squared mean field.

— Dipole-electric field interaction: Solute dipole—electric field interaction energy. This is an
oversimplification of the electrostatic solute—solvent interaction energy.

QM ENERG ES: Solute energies given by the quantum calculation program.

— I n vacuo ener gy: Vacuum energy of the solute, this will be the same for all cycles, as it is calculated just
once.

— Total energy in solution: Total solute energy in “solution”, including the interaction energy
between the solute and the solvent charges, but not including the self-energy of the external charges themselves.

— Ener gy dif f er ence: Energy difference between the two previous values.

QW MM ENERG ES: Solute—solvent interaction energies where the solute is quantum and the solvent classical, as
well as some energies derived from these. The solvent representation for these energies is the set of charges that
was introduced into the quantum calculation.

Total interaction:Total electrostatic solute—solventinteraction, calculated as the product of the solvent
charges and the electrostatic potential generated by the solute over these charges.

Interaction with permanent charges: Same as above, but considering only the permanent
solvent charges (and not the contribution of the induced dipoles).

Interaction with induced charges: Contribution of the solvent induced dipoles to the solute—
solvent interaction energy, calculated as the difference between the two previous values.

Internal energy in solution: Solute internal energy in solution, without the solute—solvent
interaction energy.

Sol ute pol arizati on energy: Solute polarization or distortion energy: the difference between the
internal energy in solution and the vacuum energy.
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— Electrostatic interaction energy: Electrostatic interaction energy including the energy needed
to polarize the solvent molecules.

— Free energy vari ation: Free energy variation between the previous cycle and the current one,
calculated by the free energy perturbation method.

Some of this data, as well as short messages about what the program is doing, will be written to standard output,
but this can be redirected to a file. For example:

asepnd wat er >wat er . st d will launch ASEP/MD usingnat er . dat as input and writing messages to
wat er . st d. The output file specified ivai nQut put will still be generated.

Apart from errors in the input, the most common errors are those occurring in the external programs, so usually the
first thing to do when the program stops unexpectedly is to check the output of the molecular dynamics or quantum
calculation program. The last lines Mai nQut put and in the standard output (or the file to which it has been
redirected) can also help in finding the errors.

5.3. Example

This example shows a simple calculation for pure water. Input filesvateer . dat , wat er . g (input for
GAUSSIAN),wat er . ct r,andwat er . i n (input files for MOLDY). Output file, as specified iai nQut put ,
iswat er . out .

water.dat
&l nput

Di rDynam cs = '/usr/| ocal / MOLDY/’
ProgAblnitio "/ home/ user/ bi n/ gaussi an’
ProgDynam cs "/ homre/ user / bi n/ nol dy’

Ablnitio = ' GAUSSI AN

Dynani cs = ' MOLDY’

Mai nQut put = ’wat er. out’
ContFile = "water.con’
AblnitioFile = "water. g’

Abl niti oQut put = 'water.ogau’
Dynami csFile = "water.ctr’
Dynami csQut put = 'water.onol’

Ener gyConv = 0. 005
ChargesConv = 0.01
MaxDi f f Charges = 10.0
Char gesType = ' CHELP
Maxlter = 50

Start = 0
Coupling = ' TOTAL’
Pol ari zation = ' NO

DoDynami cs = ' YES

NumConfig = 500
Num ni Config = 1
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Radii Factor = 0.7
Gidbv = 12
Shel | Radius = 12.0
FirstShell ="'YES
Proximty = 0.5

MaxlterOpt = 0
/

water.g
#P HF/ 6- 311G

Wt er

01

O 0.0000000 0.0000000 0.0000000
H 0.7569503 0. 0000000 -0.5858822
H -0. 7569503 0. 0000000 -0.5858822

water.ctr (time-unit must be set to 4.8888213e-14)

title = Water

nsteps = 150000

step = 0.0005
sys-spec-file = water.in
lattice-start 1
save-file = hf.save
text - node-save = 1
density = 1. 000
scale-interval =1
const-tenp =1
tenperature = 273
roll-interval = 1000
print-interval = 1000
begi n- aver age= 50001
aver age-i nterval = 100000
begi n-rdf = 50001

rdf -interval = 10

rdf -out = 100000
dunmp-file = water. dunp
begi n-dunp = 50001
dunp-interval = 100
dunp-level =3

ndunps = 500

time-unit = 4.8888213e-14
end

water.in
#\Wat er

SOLVENT 214
1 0.0000000 0.0000000 0.0000000 16.0 -0.834 (0 @S]
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2 0.7569503 0.0000000 -0.5858822 1.0 0.417 H( S)
2 -0.7569503 0.0000000 -0.5858822

SOLUTE 1

3 0.0000000 0.0000000 0.0000000 16.0 -0.834 O
4 0.7569503 0. 0000000 -0.5858822 1.0 0.417 H
4 -0.7569503 0. 0000000 -0.5858822

end

| ennar d-j ones

1 1 0.60829 3.150656

1 3 0.60829 3.150656

3 3 0.60829 3.150656

end

water.out(last section)
Cycle 6
Ener gy= -76.18251789 Eh Di pol e nonment = 3. 8493 D
D ff. energy= -0.00165296 Eh Max. diff. charges= 0.00783200 e-

| MM ENERG ES (Average of N configurations)

| **Charge(sol ute)-charge(solvent) interaction = -0. 20351731 Eh [
| U(gq,s) = SUMs*V(q)] -127.70905218 Kcal / nol

| **Di pol e(sol vent) -charge(sol vent) interaction = 0. 00000000 Eh [
| U(p,q) = -SUM p*E(Qq)] 0. 00000000 Kcal / mol

| **Van der Waals interaction = 0. 04457549 Eh |
| U( vdw) 27.97154632 Kcal / mol |
| **Electric field fluctuation = 0. 61581E-4, -.18949E-5, 0.83096E-5

| (tensor form a.u.) -.18949E-5, 0.38376E-4, -.46923E-5

| <B\2> - <B>2 0. 83096E-5, -.46923E-5, 0.97364E-4

| **Dipole-electric field interaction = -0.15982797 Eh

| -100. 29357736 Kcal / nol |
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| Qv ENERG ES I
| **In vacuo energy = -76. 00939257 Eh |
| E(0) = <Y(0)| H(0)]Y(0)> -47696. 61901494 Kcal / nol |
| **Total energy in solution = -76. 18251789 Eh |
| E = <Y| H(0) +V| Y> -47805. 25679947 Kcal / nol |
| **Energy difference = -0.17312531 Eh |
| D(E) = E - E(0) -108. 63778453 Kcal / mol |
o QMM ENERGES |
| **Total interaction = 0.20160412 Eh [
| uigt,r) = SUMqt*V(r)] -126. 50850884 Kcal / nol |
| **Interaction with permanent charges = -0. 20160412 Eh |
| uig,r) = sUMag*V(r)] -126. 50850884 Kcal / nol |
| **Interaction with induced charges = 0. 00000000 Eh |
| Up,r) =SuM((qt-q)*V(r)] 0. 00000000 Kcal / nmol |
| **Internal energy in solution = -75.98091377 Eh [
| E(int) = <Y|HO)|Y>=E - U(qt,r) -47678. 74829063 Kcal / nol |
| **Sol ute polarization energy = 0. 02847881 Eh |
| E(pol)sol = E - E(0) - U(qt,r) 17. 87072431 Kcal / nol |
| **Electrostatic interaction energy = -0.20160412 Eh |

| Ulelec) = U(qt,r) + 1/2*U(p,q) - 1/ 2*U(p,r) -126. 50850884 Kcal / mol |
| **Free energy variation = 0.00171818 Eh |

I DG, DA 1.07817397 Kcal / nol |

Conver gence reached.

The scripts /home/user/bin/gaussian and /home/user/bin/moldy are used to give the required syntax. Their
contents are:
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/home/user /bin/gaussian

(the standard g98 script modified so that the last line reads):
g98 < $argv[1l] > $argv[2]

/home/user /bin/moldy

(runs MOLDY in parallel using mpirun)
#! / bi n/ bash

{fusr/bin/mpirun -v -np 3 -nolocal -stdin $1 /usr/local /MOLDY/ ol dy >& $2
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