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Abstract

ASEP/MD is a computer program designed to implement the Averaged Solvent Electrostatic Potential/Molecular D
(ASEP/MD) method developed by our group. It can be used for the study of solvent effects and properties of molecule
liquid state or in solution. It is written in the FORTRAN90 programming language, and should be easy to follow, unde
maintain and modify. Given the nature of the ASEP/MD method, external programs are needed for the quantum calcula
molecular dynamics simulations. The present version of ASEP/MD includes interface routines for the GAUSSIAN p
HONDO, and MOLDY, but adding support for other programs is straightforward. This article describes the program
usage.

Program summary

Title of program: ASEP/MD
Catalogue identifier:ADSF
Program Summary URL:http://cpc.cs.qub.ac.uk/summaries/ADSF
Program obtainable from:CPC Program Library, Queen’s University of Belfast, N. Ireland
Computer for which the program is designed:it has been tested on Intel-based PC and Sun
Operating systems under which the program has been tested:Red Hat Linux 7.2 and SunOS 5.6
Programming language used:FORTRAN90
Memory required to execute with typical data:greatly depends on the system
No. of processors used:1
Has the code been vectorized or parallelized?:no
No. of bytes in distributed program, including test data, etc.:44 544
Distribution format: tar gzip file
Keywords: Solvent effects, QM/MM methods, mean field approximation, geometry optimization
Nature of physical problem:The study of molecules in solution with quantum methods is a difficult task because of the
number of molecules and configurations that must be taken into account. The quantum mechanics/molecular mechanic
proposed to date either require massive computational power or oversimplify the solute quantum description.

✩ This paper and its associated computer program are available via the Computer Physics Communications homepage on Sc
(http://www.sciencedirect.com/science/journal/00104655).
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Method of solution:A non-traditional QM/MM method based on the mean field approximation was developed where a c
molecular dynamics simulation is coupled with a quantum calculation. The average electrostatic potential generate
solvent over the solute is calculated from the simulation and introduced into the quantum calculation as an external fi
process can be performed iteratively. Standard external programs are used for the molecular dynamics simulations a
quantum calculations. The present program acts as an interface and controls the flow of the calculation.
Restrictions on the complexity of the problem:At present, only pure liquids and binary dilute solutions (a single solute mole
can be studied. For the molecular dynamics only MOLDY is implemented, while GAUSSIAN and HONDO are availa
the quantum calculations. Restrictions of the aforementioned programs apply.
Typical running time: Running time depends on the nature of the chemical system and the options passed to the
programs, which are usually by far the longest part of the calculations.
Unusual features of the program:Uses SYSTEM and GETARG calls.
 2003 Elsevier B.V. All rights reserved.

1. Introduction

Quantum Mechanics/Molecular Mechanics (QM/MM) methods [1] are now widely used in the stu
molecules in solution. The main advantage of these methods is that they combine a quantum descr
the solute, allowing chemical processes to be studied, with a detailed description of the solvent, obtain
simulation techniques. In most QM/MM methods the solute Schrödinger equation has to be solved for each
configuration, which implies several thousand quantum calculations. This imposes a limitation on the quali
quantum description of the solvent (basis set and calculation level) and on the significance of the results
of configurations considered).

In previous papers [2] we have developed a non-traditional QM/MM method that makes use of the
field approximation [3] (MFA). In this approximation, the average value of the energies of the different s
solvent configurations is replaced by the energy of the average configuration. Our method is based
calculation of the Average Solvent Electrostatic Potential (ASEP) from Molecular Dynamics data (MD
average potential is introduced into the molecular Hamiltonian of the solute and the Schrödinger equation is
This approximation, named ASEP/MD, reduces drastically the number of quantum calculations from
thousands to half a dozen, and introduces no significant inaccuracies [3] in the solute–solvent interaction e
the solute dipole moment. This reduced number of quantum calculations permits one to use higher quality m
while having an adequate sampling of the solvent configurations through the molecular dynamics simulati

This paper presents of the computer program developed to implement our method. The quantum calcula
the molecular dynamics simulations are performed by external programs, intentionally left out of the pres
plementation. This dependence on external programs allows the users to employ whatever program they a
tomed to or that is best suited to their needs, although specific subroutines for the purpose may have to be

2. Method

The main characteristics of the ASEP/MD method have been discussed elsewhere [2]. The following is
description. As in traditional QM/MM methods, in ASEP/MD the energy and wavefunction of the solvated
molecule are obtained by solving the effective Schrödinger equation

(1)
(
ĤQM + ĤQM/MM

)|Ψ 〉 = E|Ψ 〉.
The interaction term,̂HQM/MM , takes the following form:

(2)ĤQM/MM = Ĥ elect
QM/MM + Ĥ vdw

QM/MM ,

(3)Ĥ elect
QM/MM =

∫
ρ
〈
Vs(r;ρ)

〉
dr,
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whereρ is the solute charge density, obtained from a quantum calculation, and the term〈Vs(r;ρ)〉 is the average
electrostatic potential generated by the solvent (ASEP) at the positionr, and is obtained from MD calculation
where the solute molecule has fixed geometry and charge distributionρ—the angle brackets denote a statisti
average. The term̂H vdw

QM/MM is the Hamiltonian for the van der Waals interaction, usually represented by a Len
Jones potential. Since the solvent structure, and hence the ASEP, is a function of the solute charge densit
and (3) have to be solved iteratively. In general, only a few cycles of quantum calculation/molecular dy
simulations are needed for convergence.

In order to facilitate its implementation in a standard quantum program package, the ASEP is represe
means of a set of point charges. The method used to obtain the ASEP and the point charges that approx
as follows. First a three-dimensional grid of points is created inside the volume occupied by the solute. T
every solvent configuration considered, the electrostatic potential created by the solvent at these points is c
and averaged over all the configurations. The solvent charges inside a certain cut-off radius around the s
explicitly kept (their values divided by the total number of configurations considered) and, to avoid havi
many charges, they are grouped together if the distance between them is less than a certain value. The el
potential created by these explicit charges is subtracted from the one calculated before. In this way one ob
contribution of the solvent molecules placed outside the cut-off radius. We named this contribution ASEP1.
an external set of point charges, arranged in two spherical shells, is obtained such that the potential gen
them is the closest to the calculated ASEP1. The positions of these charges are set previously and their v
obtained through a least squares fit, so that

(4)
∑

i

(
V ′

i − Vi

)2
,

(5)V ′
i =

∑
a

qa

rai

is minimized, whereVi is the ASEP1 calculated at pointi andV ′
i is the potential generated by the fitted char

at the same point,qa is the value of the chargea andrai is the distance between chargea and pointi. These point
charges are then introduced into the solute Hamiltonian. In this way, the solvent is represented by two sets
charges, one closer to the solute and keeping some information about the solvent structure and a secon
from the solute, completing the fit to the ASEP. In the current implementation the molecular dynamics is per
with the MOLDY program [4] and the quantum calculation with the GAUSSIAN [5] or HONDO [6] package

In some cases it is desirable to make a calculation with polarizable solvent, for example to study e
transitions in the solute, which are too rapid to allow a reorganization of the solvent nuclei but perm
polarization of the electron clouds of the solvent molecules. In this case, instead of performing a full pola
molecular dynamics—which would be too expensive—the polarization is calculated after the simulation i
using the obtained solute–solvent configurations. In each configuration, the induced dipole moment is ca
for every solvent molecule,

(6)µ′
i = αiEi,

whereµ′
i is the induced dipole moment of moleculei, αi its polarizability tensor, andEi the total electric field in

the center of mass of the moleculei, including contributions from the solute and the charges and induced dipo
the other solvent molecules. Since the dipole moment on each molecule depends on the dipole moments o
of molecules, the calculation is done iteratively until convergence. Once the dipole moments have been o
the ASEP is calculated as above.

To perform a geometry optimization of the solute with the ASEP/MD method [7] we use the free energy g
(FEG) method [8], in which the forces on the nuclei are

(7)F(x) = −∂G(x)

∂x
= −

〈
∂V (x)

∂x

〉
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(8)H(x) = ∂F (x)

∂x
=

〈
∂2V (x)

∂x2

〉
− β

(〈
F(x)2〉 − 〈

F(x)
〉2)

,

whereG(x) is the free energy associated with the solute geometryx, V (r) the potential energy of the solu
including the interaction with the solvent molecules, andβ = 1/RT . The last term in Eq. (8) is related to th
thermal fluctuation of the force and, since the Hessian is not essential for geometry optimization, we negle
assume

(9)F(x) = −∂〈V (x)〉
∂x

,

(10)H(x) = −∂2〈V (x)〉
∂x2

,

where we replace the statistical average of the gradient by the gradient of the “average configuration” g
the ASEP, and similarly for the Hessian. Once the gradient and Hessian have been obtained, a standard
optimization (steepest descent, Newton-like methods, RFO) is performed in each cycle of the process.

3. Program description

The ASEP/MD program is written with readability in mind. Since most processor and memory consumin
are those performed by the external programs (quantum calculations and molecular dynamics simulatio
optimization was considered as only secondary. Once compiled and linked, the program is available as
executable file. To launch ASEP/MD the user needs to provide a general input file and “template” files, wh
be used as input for the external programs (obviously, these external programs must have been installed pr
The external programs currently supported are GAUSSIAN and HONDO for quantum calculations and M
for molecular dynamics simulations.

Fig. 1 shows the simplified flow chart of the program. The most important steps are those in bold face: m
dynamics simulation, calculation of the ASEP, and the quantum calculation.

In a typical run, the first thing the program does is to read the values of some variables from the in
supplied by the user. It then reads the system definition from the molecular dynamics template (nature and
of solvent and solute molecules, interaction potential, etc.). With this information, and if needed, the e
quantum calculation program is called to perform a calculation of the isolated solute molecule, using the
given in the quantum calculation template (method, basis set, etc.). The output of this calculation is read t
the energy, dipole moment and atomic charges of the solutein vacuo.

Now the main ASEP/MD cycle is carried out. The solute and solvent geometry and atomic charges are
into the molecular dynamics input file and the appropriate program is called to perform the simulation.
set of solvent–solute configurations is read from the output of the molecular dynamics program and the
electrostatic potential created by the solvent over the solute (ASEP) is calculated from them, as well as
interaction energies. The ASEP is then approximated by a set of point charges. A new quantum calcula
time with the external point charges representing the solvent, is performed. The output gives again the
dipole moment, and atomic charges of the solute. A check for convergence is made and, if it has not been
the solute charges are inserted again into the molecular dynamics input file and the main cycle starts anew

So far, the program flow has been described when a basic calculation is requested. There are tw
main types of calculations which require some modifications of this scheme: polarizable solvent and ge
optimization.
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Fig. 1. Simplified flow chart of the ASEP/MD program.
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3.1. Polarizable solvent

In the current implementation [2], the solvent polarization calculation is performed after an equilibrium s
of solvent–solute configurations has been obtained with a non-polarizable solvent. Once a normal ru
program, as described above, has finished, another calculation is carried out. This time no more m
dynamics simulations are made, but the solvent configurations are read from the final simulation of the p
run. An additional input is given with the permanentin vacuoatomic charges of the solvent molecule and
polarizability tensor. Then, for each one of the configurations, all the solvent molecules are polarized by th
charge distribution and by the other solvent molecules. The calculated ASEP now includes contributions f
permanent charges and the induced dipole moments of the solvent molecules. This potential is approxim
the two sets of point charges explained above and introduced into the quantum calculation. The charge dis
of the solute is used to obtain the solvent polarization again, and this process is repeated until convergenc

This whole calculation can performed for different solute electronic states, keeping always the same se
vent configurations. In this way, it is possible to study the solvent effect on electronic transitions in the solute
take place without appreciable reordering of the solvent nuclei, but with a major response of the solvent e

3.2. Geometry optimization

The geometry optimization method implemented in this program is based on the Free Energy Gradien
method [8], in which the effective forces on the nuclei are taken as the average force over a set of equ
solvent–solute configurations. Once the molecular dynamics simulation has been made and the ASEP
a geometry optimization calculation is performed using the rational function optimization (RFO) method
this way, a new solute geometry is obtained, which is introduced into the next molecular dynamics simulati
process is repeated until convergence.

The gradient and Hessian, needed for the optimization process, are given by the quantum calculation
but the appropriate van der Waals components have to be added. These components are calculated by the
program as an average over all the solute–solvent configurations considered.

There are a number of options affecting the optimization method used. In each cycle of the ASEP/MD p
the optimization may be complete (a stationary point is found and this geometry is used in the next cycle) o
(a fixed number of optimization steps is performed, and while the geometry used in the next cycle is not a st
point, it is closer to one). Other options are related to the algorithm of the optimization procedure.

4. Program organization

The ASEP/MD source code is divided into different files, each of them containing subroutines and defi
grouped according to the subject. The program uses modules to make variables and arrays globally avail
following is a short description of the contents of the different files:

Main.f90

This file contains the main program, global definitions, and subroutines related directly to the main prog

– Module definitions.
– ASEP_MD: This is the main program that controls the flow of the calculations.
– LeerEntrada: This subroutine reads the input provided by the user.
– LeerContinuacion: If a calculation is resumed, this subroutine reads the “continue” file.
– EscribePrin: Writes the output of the main program.
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Execute.f90

The subroutines in this file are related to the external programs used by ASEP/MD to perform the q
mechanics calculations and molecular dynamics simulations. Most of these subroutines are program-inde
they simply call the appropriate subroutine or process depending on the specific program used.

– LeerSistema: Calls another subroutine to read the system definition (solute, solvent, force field, etc.
– LeerAbinitio: Calls another subroutine to read the output of a quantum calculation.
– EjecutarAbInitio: Runs the appropriate quantum calculation through a SYSTEM call.
– EjecutarDinamica: Runs the appropriate MD simulation through a SYSTEM call.
– LeerConfig: Extracts a solute–solvent configuration from the output of the MD program.

MoldySubroutines.f90

The subroutines included in this file deal with the input and output of the molecular dynamics program M

– LeerControlMoldy: Reads the MOLDY control file for some necessary parameters.
– LeerSistemaMoldy: Reads the system definition from the MOLDY input file.
– ModificarMoldy: Modifies the MOLDY input files to run a new simulation.

GaussianSubroutines.f90

The subroutines included in this file deal with the input and output of the quantum calculation pr
GAUSSIAN.

– ModificarGaussian: Modifies the GAUSSIAN input file to perform a new quantum calculation.
– LeerSalidaGaussian: Reads the output of GAUSSIAN.

HondoSubroutines.f90

The subroutines included in this file deal with the input and output of the quantum calculation program HO

– ModificarHondo: Modifies the HONDO input file to perform a new quantum calculation.
– LeerSalidaHondo: Reads the output of HONDO.

Calculations.f90

This file is the core of the program. It contains the subroutines that calculate the average solvent elec
potential and the point charges that reproduce it. It also contains some other auxiliary subroutines.

– PosicionesCargas: Gets the positions of the outer point charges representing the average s
electrostatic potential.

– CalcularCargas: This subroutine calls other subroutines to calculate the values of the point charg
will represent the solvent in the quantum calculations.

– PuntosPotencial: Calculates a grid of points inside the solute in which the ASEP will be calculated
– CalcularPotencial: Calculates the electrostatic potential and interaction energies for a given s

solvent configuration.
– ReducirCapa: Reduces the number of point charges in the solvent representation.
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– CalcularCampo: Calculates the fluctuations of the solvent electric field.
– AjusteLagrange: Fits the outer point charges by the Lagrange multipliers method.
– ResolverLU: Solves a system of linear equations by the LU factorization method.
– GirarMolecula: Rotates a molecule (solute or solvent) to orient it along its main inertia axes.

Optim.f90

This file contains all the subroutines needed to perform a geometry optimization.

– OptimizarGeometria: This is the main subroutine for geometry optimization. It controls the flow of
program in this section.

– CalcularGradHessPot: Calculates the contribution of the van der Waals potential to the gradien
Hessian.

– BuscarMinimo: Performs a linear search to find a minimum.
– EnergPunto: This is a function that returns the total energy for a given solute geometry.
– ActualizarHessiana: Updates the Hessian using an appropriate formula.
– CalcularIncremento: Calculates the increment to obtain the new solute geometry.
– EscribeOptim: Writes output related to the optimization process.

5. Usage

The compilation of this program is straightforward. Just feed the names of the different source files
compiler. For example, withpgf90 use (this is a single line):

[user@localhost]$ pgf90 Main.f90 Execute.f90 MoldySubroutines.f90
GaussianSubroutines.f90 HondoSubroutines.f90 Calculations.f90
Optim.f90 -o asepmd

No makefile or configure script is needed.
Once the program has been successfully compiled and linked, the resulting binary file can be executed.

a single command-line option: the name of the global input file. This file contains the values of the di
options affecting the calculation. The input is formatted as a namelist called Input, whose syntax may de
the compiler and platform.

In addition to the global input file, the user must have access to suitable external programs for the q
calculations and for the molecular dynamics simulations. For these external programs the user must supply
files from which ASEP/MD can build the appropriate input files as needed. Currently, there are some lim
on the options and units that can be used in the template files, but they can be easily circumvented by m
the launching scripts or the parser subroutines. Future versions may eliminate these limitations.

As the calculation progresses, input and output files for the external programs will be created for each
the process. All files will be created in the current working directory, so it is recommended to create a de
directory for each calculation and run the program from there.

5.1. Input

The following is a short description of the different options in theInput namelist. For each option, its typ
(string, integer, or float) is indicated:
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– DirDynamics: String. Must point to the directory where the molecular dynamics binaries reside, with
trailing slash.

– ProgAbInitio: String. Location of a script or binary file that will run the quantum calculation prog
It will be launched as ‘ProgAbInitio input-file output-file’, so the user is advised to write
script that runs the program in this way. The value of this option should include the full path.

– ProgDynamics: String. Location of a script or executable that will run the molecular dynamics prog
It will be launched as ‘ProgDynamics input-file output-file’, so the user is advised to write
script that runs the program in this way. The value of this option should include the full path.

– AbInitio: String. This option specifies the program that will be used for quantum calculations. Valid v
are ‘GAUSS’ for GAUSSIAN and ‘HONDO’ for HONDO.

– Dynamics: String. This option specifies the program that will be used for molecular dynamics simula
Since the only molecular dynamics program supported in this version is MOLDY, the value must be ‘MO

– MainOutput: String. Name of the file where the general output will be written in text format.
– ContFile: String. Name of the file where the resume information will be written to and/or read from.
– AbInitioFile: String. Name of the template file for the quantum calculation input. This file will be

and used as a template for each quantum calculation performed. The system definition (solute and
point charges) will be added by ASEP/MD as needed, so only such options as basis set and quantum
have to be specified here. This file should be in the format expected by the quantum calculation progra
It will not be overwritten.

– AbInitioOutput: String. This is the generic name for the quantum calculation output files. The nam
be modified for each cycle by appending ‘.cic.#’, where # is the cycle number.

– DynamicsFile: String. Name of the template file for the molecular dynamics input. This file will be
and used as a template for each molecular dynamics simulation performed. This file should be in the
expected by the molecular dynamics program used, it will not be overwritten.

– DynamicsOutput: String. This is the generic name for the molecular dynamics output files. The nam
be modified for each cycle by appending ‘.cic.#’, where # is the cycle number.

– InitialDynamics: String. Sometimes the user may want to perform an initial molecular dyna
calculation with different conditions (smaller time step, lower temperature, etc.) to equilibrate the s
In that case the name of the input file for this simulation is specified here. If this option is left blank, n
equilibration dynamics will be performed.

– EnergyConv: Float. Value of the convergence criterium for the energy. If the solute energy diffe
between two consecutive cycles is less thanEnergyConv, the energy is considered as converged.

– ChargesConv: Float. Value of the convergence criterion for the solute atomic charges. If the max
difference in the atomic charges of the solute between two consecutive cycles is less thanChargesConv, the
solute atomic charges are considered to have converged.

– MaxDiffCharges: Float. Maximum allowed variation in the solute atomic charges from cycle to cycle
charges’ variation is damped if it is larger thanMaxDiffCharges.

– ChargesType: String. Type of atomic charges calculated for the solute. Allowed values are: ‘MUL
Mulliken type, ‘CHE’ for CHELP calculated by the quantum program, ‘POT’ for charges fitted to
electrostatic potential by the ASEP/MD program.

– MaxIter: Integer. Maximum number of molecular dynamics + quantum calculation cycles. If this num
reached, the program terminates.

– MaxIterPol: Integer. Maximum number of solvent polarization cycles if a solvent polarization calcul
is requested.

– Start: Integer. Initial cycle for the ASEP/MD calculation. IfStart = 0, the program will start with a
quantum calculation of the isolated solute. For other values, the file specified inContFile should contain
valid data for the previous cycles.
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– Coupling: String. Type of coupling between solute and solvent. Allowed values are: ‘NON’ for no coup
a single quantum calculation for the solute in solution will be performed; ‘PAR’ for partial coupling, se
cycles are made until convergence is achieved orMaxIter is reached; ‘TOT’ for full coupling, the solute i
copied into the solvent (this is only for pure liquids).

– Polarization: String. ‘YES’ if a solvent polarization calculation should be made; ‘NO’ otherwise.
– DoDynamics: String. The ASEP/MD cycles start with a molecular dynamics simulation, then a qua

calculation, and then another cycle begins. If a previous run is being resumed and the next molecular d
simulation has already been done, settingDoDynamics = ‘NO’ will skip the first molecular dynamics run
and start with the following quantum calculation. This only skips thefirst molecular dynamics simulatio
needed. The following cycles will be made normally. If all simulations are to be performed,DoDynamics
should be ‘YES’.

– NumConfig: Integer. Number of solute–solvent configurations considered for obtaining the ASEP.
– NumIniConfig: Integer. First configuration to consider in obtaining the ASEP.
– RadiiFactor: Float. Factor by which the van der Waals radii of the solute atoms will be multiplied w

getting the grid of points to calculate the ASEP.
– GridDiv: Integer. Number of points in each dimension where the ASEP will calculated. The max

number of grid points is thusGridDiv [3], but it will typically be far less.
– FirstShell: String. If ‘YES’, the charges of the solvent molecules closest to the solute will be consi

explicitly. If ‘NO’, they will not.
– ShellRadius: Float. Cut-off radius around the solute beyond which solvent molecules will no

considered explicitly.
– Proximity: Float. Minimum distance between point charges. If two charges are closer than this valu

will be added together.
– PermCharges: String. Name of the file with the solvent atomic charges and polarizability. This is only

when a solvent polarization calculation is performed.
– IndDip: String. Type of calculation for the induced dipole moments in the solvent molecules. ‘NOR’ tri

a one-pass calculation, ‘CON’ triggers a self-consistent polarization process until convergence.
– MaxIterOpt: Integer. Maximum number of optimization iterations within each ASEP/MD cycle
MaxIterOpt = 0, optimization is turned off. If this number of iterations is reached, the optimization e
but the ASEP/MD program continues normally.

– GradientConv: Float. Convergence criterion for the gradient in the optimization process. Whe
gradient’s magnitude is less than this value, the optimization ends.

– MinStep: Float. Convergence criterion for the geometry variation in the optimization process.
magnitude of the predicted change in geometry is less than this value, the optimization ends.

– MaxStep: Float. Maximum allowed change in the geometry between iterations of the optimization pr
If the geometry change is larger, it will be damped accordingly.

– CalcHessian: Integer. Number of optimization iterations after which the Hessian will be calculated
by the quantum calculation program; in other iterations it will just be updated by the appropriate form
CalcHessian= 1, the Hessian will be calculated in every iteration. IfCalcHessian= 0, the Hessian will
never be calculated; the identity matrix will be taken as the initial Hessian and updated in following iter
If CalcHessian= 10, for example, the Hessian will be calculated again every 10 cycles.

– LinearSearch: String. ‘YES’ turns on the linear search algorithm to locate a minimum of the energy i
search direction. ‘NO’ turns it off.

The input file can be specified as an argument when running the program. If no extension is given, ‘.dat’
assumed and appended to the name:
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– asepmd will launch ASEP/MD and ask for an input file.
– asepmd water will launch ASEP/MD usingwater.dat as input.
– asepmd water.input will launch ASEP/MD usingwater.input as input.

5.2. Output

The output of this program, stored inMainOutput, will show, for each cycle of the ASEP/MD proces
the values of the solute–solvent interaction energy, solvent dipole moment, and other useful energies.
description of this output follows:

MM ENERGIES: Energies and properties calculated from the MD data only; the solute and the solve
treated classically. The MM solute–solvent interaction energy is averaged over all the considered config
and split into three components.

– Charge(solute)-charge(solvent) interaction: Interaction energy between the perman
charges of the solvent and the atomic charges of the solute.

– Dipole(solvent)-charge(solvent) interaction: Interaction energy between the induc
dipoles of the solvent and the atomic charges of the remaining solvent molecules. This energy will
non-zero if a polarizable solvent calculation has been made.

– Van der Waals interaction: Van der Waals interaction energy between solvent and solute, calcu
by using the same potential (typically Lennard-Jones) given in the molecular dynamics input.

– Electric field fluctuation: Fluctuation of the electric field at the solute’s center of ma
calculated as the difference between the mean squared field and the squared mean field.

– Dipole-electric field interaction: Solute dipole–electric field interaction energy. This is
oversimplification of the electrostatic solute–solvent interaction energy.

QM ENERGIES: Solute energies given by the quantum calculation program.

– In vacuo energy: Vacuum energy of the solute, this will be the same for all cycles, as it is calculate
once.

– Total energy in solution: Total solute energy in “solution”, including the interaction ene
between the solute and the solvent charges, but not including the self-energy of the external charges the

– Energy difference: Energy difference between the two previous values.

QM/MM ENERGIES: Solute–solvent interaction energies where the solute is quantum and the solvent clas
well as some energies derived from these. The solvent representation for these energies is the set of ch
was introduced into the quantum calculation.

– Total interaction: Total electrostatic solute–solvent interaction, calculated as the product of the s
charges and the electrostatic potential generated by the solute over these charges.

– Interaction with permanent charges: Same as above, but considering only the perma
solvent charges (and not the contribution of the induced dipoles).

– Interaction with induced charges: Contribution of the solvent induced dipoles to the solu
solvent interaction energy, calculated as the difference between the two previous values.

– Internal energy in solution: Solute internal energy in solution, without the solute–solv
interaction energy.

– Solute polarization energy: Solute polarization or distortion energy: the difference between
internal energy in solution and the vacuum energy.
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– Electrostatic interaction energy: Electrostatic interaction energy including the energy nee
to polarize the solvent molecules.

– Free energy variation: Free energy variation between the previous cycle and the current
calculated by the free energy perturbation method.

Some of this data, as well as short messages about what the program is doing, will be written to standar
but this can be redirected to a file. For example:

asepmd water > water.std will launch ASEP/MD usingwater.dat as input and writing messages
water.std. The output file specified inMainOutput will still be generated.

Apart from errors in the input, the most common errors are those occurring in the external programs, so us
first thing to do when the program stops unexpectedly is to check the output of the molecular dynamics or q
calculation program. The last lines inMainOutput and in the standard output (or the file to which it has b
redirected) can also help in finding the errors.

5.3. Example

This example shows a simple calculation for pure water. Input files arewater.dat, water.g (input for
GAUSSIAN),water.ctr, andwater.in (input files for MOLDY). Output file, as specified byMainOutput,
is water.out.

water.dat

&Input

DirDynamics = ’/usr/local/MOLDY/’
ProgAbInitio = ’/home/user/bin/gaussian’
ProgDynamics = ’/home/user/bin/moldy’

AbInitio = ’GAUSSIAN’
Dynamics = ’MOLDY’
MainOutput = ’water.out’
ContFile = ’water.con’
AbInitioFile = ’water.g’
AbInitioOutput = ’water.ogau’
DynamicsFile = ’water.ctr’
DynamicsOutput = ’water.omol’

EnergyConv = 0.005
ChargesConv = 0.01
MaxDiffCharges = 10.0
ChargesType = ’CHELP’
MaxIter = 50
Start = 0
Coupling = ’TOTAL’
Polarization = ’NO’
DoDynamics = ’YES’

NumConfig = 500
NumIniConfig = 1
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RadiiFactor = 0.7
GridDiv = 12
ShellRadius = 12.0
FirstShell = ’YES’
Proximity = 0.5

MaxIterOpt = 0
/

water.g

#P HF/6-311G

Water
0 1

O 0.0000000 0.0000000 0.0000000
H 0.7569503 0.0000000 -0.5858822
H -0.7569503 0.0000000 -0.5858822

water.ctr(time-unit must be set to 4.8888213e–14)

title = Water
nsteps = 150000
step = 0.0005
sys-spec-file = water.in
lattice-start = 1
save-file = hf.save
text-mode-save = 1
density = 1.000
scale-interval = 1
const-temp = 1
temperature = 273
roll-interval = 1000
print-interval = 1000
begin-average= 50001
average-interval= 100000
begin-rdf = 50001
rdf-interval = 10
rdf-out = 100000
dump-file = water.dump
begin-dump = 50001
dump-interval = 100
dump-level = 3
ndumps = 500
time-unit = 4.8888213e-14
end

water.in

#Water

SOLVENT 214
1 0.0000000 0.0000000 0.0000000 16.0 -0.834 O(S)
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2 0.7569503 0.0000000 -0.5858822 1.0 0.417 H(S)
2 -0.7569503 0.0000000 -0.5858822

SOLUTE 1
3 0.0000000 0.0000000 0.0000000 16.0 -0.834 O
4 0.7569503 0.0000000 -0.5858822 1.0 0.417 H
4 -0.7569503 0.0000000 -0.5858822

end

lennard-jones

1 1 0.60829 3.150656
1 3 0.60829 3.150656
3 3 0.60829 3.150656

end

water.out(last section)

Cycle 6

Energy= -76.18251789 Eh Dipole moment= 3.8493 D

Diff. energy= -0.00165296 Eh Max. diff. charges= 0.00783200 e-

----------------------------------------------------------------------------

| MM ENERGIES (Average of N configurations) |

| **Charge(solute)-charge(solvent) interaction = -0.20351731 Eh |

| U(q,s) = SUM[s*V(q)] -127.70905218 Kcal/mol |

| **Dipole(solvent)-charge(solvent) interaction = 0.00000000 Eh |

| U(p,q) = -SUM[p*E(q)] 0.00000000 Kcal/mol |

| **Van der Waals interaction = 0.04457549 Eh |

| U(vdw) 27.97154632 Kcal/mol |

| **Electric field fluctuation = 0.61581E-4, -.18949E-5, 0.83096E-5 |

| (tensor form, a.u.) -.18949E-5, 0.38376E-4, -.46923E-5 |

| <E\2> - <E>^2 0.83096E-5, -.46923E-5, 0.97364E-4 |

| **Dipole-electric field interaction = -0.15982797 Eh |

| -100.29357736 Kcal/mol |
----------------------------------------------------------------------------
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x. Their
----------------------------------------------------------------------------
| QM ENERGIES |

| **In vacuo energy = -76.00939257 Eh |

| E(0) = <Y(0)|H(0)|Y(0)> -47696.61901494 Kcal/mol |

| **Total energy in solution = -76.18251789 Eh |

| E = <Y|H(0)+V|Y> -47805.25679947 Kcal/mol |

| **Energy difference = -0.17312531 Eh |

| D(E) = E - E(0) -108.63778453 Kcal/mol |
----------------------------------------------------------------------------

----------------------------------------------------------------------------
| QM/MM ENERGIES |

| **Total interaction = 0.20160412 Eh |

| U(qt,r) = SUM[qt*V(r)] -126.50850884 Kcal/mol |

| **Interaction with permanent charges = -0.20160412 Eh |

| U(q,r) = SUM[q*V(r)] -126.50850884 Kcal/mol |

| **Interaction with induced charges = 0.00000000 Eh |

| U(p,r) = SUM[(qt-q)*V(r)] 0.00000000 Kcal/mol |

| **Internal energy in solution = -75.98091377 Eh |

| E(int) = <Y|H(0)|Y> = E - U(qt,r) -47678.74829063 Kcal/mol |

| **Solute polarization energy = 0.02847881 Eh |

| E(pol)sol = E - E(0) - U(qt,r) 17.87072431 Kcal/mol |

| **Electrostatic interaction energy = -0.20160412 Eh |

| U(elec) = U(qt,r) + 1/2*U(p,q) - 1/2*U(p,r) -126.50850884 Kcal/mol |

| **Free energy variation = 0.00171818 Eh |

| D(G), D(A) 1.07817397 Kcal/mol |
----------------------------------------------------------------------------

Convergence reached.

The scripts /home/user/bin/gaussian and /home/user/bin/moldy are used to give the required synta
contents are:
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0-0243)

9.

Jr., R.E.
Cossi,
alick,

Piskorz,
ombe,
sian 98,

(QCPE),

nts 107
/home/user/bin/gaussian

(the standard g98 script modified so that the last line reads):

g98 < $argv[1] > $argv[2]

/home/user/bin/moldy

(runs MOLDY in parallel using mpirun)

#!/bin/bash

/usr/bin/mpirun -v -np 3 -nolocal -stdin $1 /usr/local/MOLDY/moldy >& $2
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