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Abstract
In this work, we investigated muonic atoms and molecules from a quantum chemist's viewpoint

by incorporating muons in the CASSCF model. With the aim of predicting muonic X-ray ener-

gies, primitive muonic basis sets were developed for a selection of elements. The basis sets were

then used in CASSCF calculations of various atoms and molecules to calculate muonic excited

states. We described the influence of nuclear charge distribution in predicting muonic X-ray

energies. Effects of the electronic wave function on the muonic X-ray energies were also exam-

ined. We have computationally demonstrated how the muon can act as a probe for the nuclear

charge distribution or electronic wave function by considering lower or higher muonic excited

states, respectively.
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1 | INTRODUCTION

Even though chemists are primarily concerned with ordinary substances consisting of electrons and atomic nuclei, the families of subatomic parti-

cles allow for various additional types of exotic matter. For example, the positive muon can replace the proton in a hydrogen atom to yield a light

isotope of hydrogen called muonium. The muonium atom can then become a part of molecules and give rise to structural changes.[1] In addition,

positive muons can localize in condensed matter at negatively charged sites.[2] The localization of positive muons in matter is of interest to experi-

mentalists working with the muon spin resonance/rotation/relaxation (μSR) technique.[3] Quite recently there have been computational studies

on small organic molecules where one of the protons has been substituted with a positive muon. Localization of the muon and the muonic hyper-

fine coupling constant have been predicted to demonstrate how the positive muon can act as a probe for molecular structure.[4–6]

Negative muons, conversely, can replace electrons in atoms and molecules. Muonic atom formation in particular, has been a well-known phe-

nomenon for several decades.[7] Due to the muon being approximately 200 times heavier than an electron, its orbitals are significantly more com-

pact. This leads to the muon shielding the nucleus from electrons by almost one unit charge.[8] The process of muonic atom formation is

accompanied by the emission of X-rays which originate from the cascading of the muon down to lower energy states. These muonic X-ray ener-

gies are primarily determined by the nuclear charge but also by the size of the nucleus and to a lesser extent by electronic structure.[8] The free

muon's lifetime is 2.2 μs and it is reduced to some extent in muonic atoms by nuclear capture processes.[8–10] Recently, there have been interest-

ing developments in muonic X-ray spectroscopy where nondestructive elemental analysis with several useful properties has been achieved.[11–13]

This in turn has awakened the interest of theoreticians, who can use quantum mechanics to predict properties of muonic atoms and molecules.

Reyes and co-workers have developed specialized muonic basis sets and then investigated muonic atoms ranging from hydrogen to argon at

Hartree–Fock (HF) and full configuration interaction (FCI) levels of theory. Shielding of the nuclear charge by the muon and its effect on ionization

potentials were studied in detail.[14–16] However, works which aim at bridging muonic X-ray spectroscopy and theoretical prediction of muonic

X-ray energies have been missing. We attempt to narrow this gap by developing muonic basis sets and using them to calculate muonic X-ray ener-

gies for a selection of atoms and molecules.
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2 | THEORY

The equations which incorporate muons in the HF and configuration interaction (CI) models can be found in the work by Posada et al.[16] In our

study, the CI method is combined with orbital optimization, yielding a complete active space self-consistent field (CASSCF) method which is capa-

ble of calculating muonic excited states with ground state electronic configuration.[17] The calculation of molecular integrals over mixed elec-

tronic/muonic basis sets was handled as follows. The one-particle integrals ij ĥj j
� �

are nonvanishing only if the indices i, j both refer to either

electronic or muonic basis functions. This is so since the operator ĥ contains either muonic or electronic operators of kinetic energy and Coulom-

bic attraction with the nucleus. Regarding two-particle integrals, because electrons and muons are mutually distinguishable, there can only be

electron-muon Coulomb integrals and no electron-muon exchange integrals. Therefore, the two-particle integrals (ij|kl) are nonvanishing only

when i, j both refer to electrons or muons and k, l both refer to electrons or muons.

Due to the muon's larger mass compared with an electron, there are few additional issues that need to be taken care of. First, the Born–

Oppenheimer approximation becomes less valid for treating muonic atoms and molecules. To compensate for this, we implemented the finite

nuclear mass correction (FNMC) developed by Mohallem and coworkers.[18,19] Recently FNMC was successfully applied by Reyes and coworkers

to correct for the Born–Oppenheimer approximation in their study of muonic atoms.[15,16] In the FNMC method, the electronic or muonic kinetic

energy integrals

TijAB ¼ −
1
2m

ϕiA r2
�� ��ϕjB

� � ð1Þ

are modified by addition of the quantity

QijAB ¼
m
MA

TijAB ifA¼B

0 ifA 6¼B

(
ð2Þ

where m is the mass of electron or muon, MA is the mass of nucleus A and TijAB is the electronic or muonic kinetic energy integral. The small letter

indices i and j denote the basis functions and the capital letter indices A and B specify the nuclei at which the basis functions are centered. Then,

at the Hartree–Fock level, the Fock matrix is corrected by adding the FNMC matrix Q to the Born–Oppenheimer Fock matrix F,

FFNMC ¼F+Q ð3Þ

Because the kinetic energy matrix elements are modified, the correction also affects correlated methods. Formally, in the CASSCF method,

the correction modifies the Hamiltonian matrix which is to be diagonalized.

Second, because of the muon's large mass, its orbitals are significantly closer to the nucleus. Therefore, assuming a point-like structure of the

nucleus is expected to become inaccurate for predicting muonic energy levels. For modeling the finite size of the nucleus, there are various

options like the uniformly charged sphere, the Fermi two-parameter charge distribution and the Gaussian charge distribution.[20] In our work, we

make use of the latter. In this model, the nuclear charge distribution of nucleus A is given by

ρA Rð Þ¼ ρ0A exp −ξAR
2

� � ð4Þ

ρ0A ¼ eZ
ξA
π

	 
3=2

ð5Þ

ξA ¼
3

2 R2h i ð6Þ

where the nuclear charge distribution parameter ξA is related to the empirical root-mean square radius of the nucleus hR2i (see Ref. [20]). Then, in

the Hamiltonian, the Coulombic attraction term with the nucleus is modified as follows

V̂iA ¼ −
ZA

j ri−RA j! V̂iA ¼ −

ð
VA

ρA RAð Þ
j ri−RA jdV ð7Þ

where the charge density integrated over the coordinates of nucleus A yields the nuclear charge ZA. One of the advantages of the Gaussian

nuclear charge distribution is its ease of implementation since molecular integrals over Gaussian functions are routinely calculated in quantum

chemical codes.

3 | METHODS

The computational work consisted of optimizing uncontracted muonic basis sets for a selection of elements and then using these basis sets in cal-

culations of muonic atoms and molecules. To lessen concerns about relativistic effects, we considered only lighter elements of the first three rows

with the exception of copper. Incorporating basis sets for Cu was done due to the availability of experimental data on muonic X-rays and our
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interest in looking at the nuclear size effects on muonic X-ray energies. To have the flexibility for describing a large range of excited states and

atoms with varying nuclear charge distribution, the muonic basis sets were not contracted.

3.1 | Optimization of primitive muonic basis sets

The design of primitive muonic basis sets amounted to choosing a number of Gaussian primitives and optimizing their exponents. For the optimi-

zation, we considered a hydrogen-like system with one muon and a point-like nucleus. The Gaussian exponents were optimized separately for dif-

ferent orbital angular momentum shells. This yielded different sets of real spherical harmonic Gaussian basis functions for s, p, and d orbitals,

covering up to n = 7 lowest-energy states.

To avoid the excessive overhead of optimizing Gaussian exponents individually, various options are available that reduce the number of opti-

mization parameters. Commonly, the set of exponents is expressed through even-tempered or well-tempered series.[21] We aimed for greater

flexibility and used the so-called polynomial generator functions to expand the Gaussian exponents (α lð Þ
k ) as

lnα lð Þ
k ¼ a lð Þ

1 +
Xm
i¼2

a lð Þ
i gi kð Þ k¼1,…,Nl ð8Þ

where Nl is the number of basis functions for given angular momentum atomic orbitals. The polynomial generator functions are defined as gi(k) =

ki − 1, and the set aj
� �m

j¼1 contains the parameters to be optimized-in our work m = 4. For the optimization procedure, we used the Nelder–

Mead algorithm available in Python's SciPy library.[22,23] The exponents were optimized by minimizing the state-averaged energy obtained

from a FCI calculation. The D2h point group was used to partition orbitals of different symmetry. Then, orbitals of particular symmetry were

chosen to generate the excited configurations in a FCI calculation. For s, p, and d functions, the energies were averaged over 7, 6, and

5 states, respectively.

3.2 | Calculations on atoms and molecules

After obtaining the basis sets, we did CASSCF calculations on various atoms and molecules to predict muonic excited states and muonic X-ray

energies. We looked at the atomic species C, O, Al+, Cu+, Ar, and Ar2+ and molecules H2O and CH2O. One muon was added to each, decreasing

the total charge by one. In the case of molecules, the muonic basis sets were centered on the most electronegative atom. To account for the

shielding of nuclear charge by the muon, we used electronic basis sets which correspond to the element with one less atomic number: C-B.ANO-

L-VTZP, O-N.ANO-L-VTZP, Al-Mg.ANO-L-VTZP, and Cu-Ni.ANO-L-VTZP.[24–26] For the atoms in the molecule not hosting the muon, we used

the normal ANO-L-VTZP basis set. Muons were described using our developed Gaussian primitive basis sets. In the CASSCF calculation, muonic

orbitals were put in the active space and the number of active electrons (ie, muons) was set to one. The electrons were included in the inactive

space. Doing so we were able to calculate excited states corresponding to muonic excitations. Finally, muonic X-ray energies were calculated as a

difference of energies between states with different principal and angular quantum numbers (Δl = 1). All the implementations and calculations

were done using OpenMolcas quantum chemistry software.[27,28]

4 | RESULTS AND DISCUSSION

Primitive muonic basis sets were designed for the atoms H to Ar and Cu. Compared to electronic orbitals, the orbitals of muons are significantly

more compact due to the muon's larger mass. This causes the Gaussian exponents of muonic basis sets to be much larger. For example, when

comparing the muonic basis sets of Ar with corresponding cc-pVTZ electronic basis sets, the largest and smallest muonic Gaussian exponents for

s orbitals are roughly 2 � 104 times larger. The Gaussian exponents for the muonic basis sets we used in our calculations can be found in the Sup-

porting Information.

4.1 | Nuclear size effects

From previous theoretical and experimental studies it is known that changes in the nuclear size and shape, caused for example by the

change in the number of neutrons, significantly influence muonic X-ray energies.[29–32] In the model we used, the nuclear charge distribu-

tion is determined by a single empirical parameter, the width of the Gaussian distribution, see Equations (4)-(6). To demonstrate the use

of our muonic basis sets, we predicted the energies of various muonic transitions in atoms. We calculated the muonic X-ray energies using

a point-like and the Gaussian-shaped model for the nucleus. In the latter case, default values taken from Visscher et al. were used.[20] The

results of our calculations are shown in Table 1. The calculations were done on systems only with a closed electronic shell and the charges

are not consistent among the species studied. Here, we considered only lower level transitions and hence the electronic screening effect

is expected to be unimportant.[33] First, we can see that a point-like description of the nucleus gives more accurate results compared to
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experimental values for the lighter C and O atoms. However, for the species Al, Ar and especially Cu, using the Gaussian model for the

nucleus yields energies closer to the experiment. Unfortunately, with the default values the energies are still somewhat off.

In comparison with the typical muonic X-ray energies given in Kubo et al., we can identify larger discrepancies.[7,34] At first for the C and O

atoms, our calculations compare quite well. However, when looking at the heavier atoms, we can see significant differences arising. For Al and

Cu, the Kβ transitions are lower both in our calculations and the experimental reference in comparison with the typical values. This discrepancy is

especially pronounced for Cu, for which there appears to be a few 100 keV difference. Unfortunately, we do not have an experimental value for

that transition to verify the accuracy of our calculations directly. By considering the transitions 3d ! 2p and 2p ! 1s sequentially, we can esti-

mate based on both our calculations and the experimental data, that the corresponding Kβ transition should have an energy in the range

1800-1850 keV, which is quite far from the so-called typical value of 2126 keV. The typical value seems to correspond to the muon transitioning

from a near-continuum state to the 1s orbital.

Our calculations indicate a splitting in energies due to the finite size of the nucleus. For example, when looking at the 4p ! 2s and 4d ! 2p

transitions in Cu, a 35 keV difference can be noticed. This is caused by the involvement of 2s orbital in the former case, where the muonic density

TABLE 1 Muonic X-ray energies calculated with a point-like (A) and a Gaussian-shaped (B) nucleus with a default parameter ξ, using our

developed muonic basis sets. For comparison we have taken available experimental values from Engfer et al. and the so-called typical values from
Kubo et al.[7,33,34] For the experimental values of Cu, we have given ranges which cover different states resulting from addition of spin and orbital
angular momentum. For the typical values, we have given the Siegbahn notation for the transition in parentheses as given in the reference and
interpreted the numbers correspondingly[35]

Transition A B Experimental values Typical values

μC− (ξ = 6.808 � 108)
2p ! 1s 75.24 74.84 75.25 75.8 (Kα)

3p ! 1s 89.18 88.78 89.21 89.2 (Kβ)

3p ! 2s 13.93 13.88 13.9 (Lα)

3d ! 2p 13.93 13.93 13.9 (Lα)

4p ! 2s 18.81 18.76 18.8 (Lβ)

4d ! 2p 18.81 18.81 18.8 (Lβ)

μO− (ξ = 5.863 � 108)
2p ! 1s 134.08 132.67 133.52 134 (Kα)

3p ! 1s 158.91 157.50 158.41 158 (Kβ)

3p ! 2s 24.83 24.65 24.8 (Lα)

3d ! 2p 24.83 24.83 24.8 (Lα)

4p ! 2s 33.52 33.34 33.5 (Lβ)

4d ! 2p 33.52 33.52 33.5 (Lβ)

μAl (ξ = 4.434 � 108)
2p ! 1s 355.07 343.67 346.9 347 (Kα)

3p ! 1s 420.83 409.43 413.02 422 (Kβ)

3p ! 2s 65.75 64.32 65.8 (Lα)

3d ! 2p 65.75 65.75 65.8 (Lα)

4p ! 2s 88.76 87.33 88.8 (Lβ)

4d ! 2p 88.76 88.76 88.8 (Lβ)

μAr− (ξ = 3.572 � 108)
2p ! 1s 681.66 637.12 643.94

3p ! 1s 807.89 763.34

3p ! 2s 126.23 120.58

3d ! 2p 126.23 126.22

4p ! 2s 170.41 164.76

4d ! 2p 170.41 170.39

μCu (ξ = 2.767 � 108)
2p ! 1s 1771.19 1495.77 1506.61 - 1512.78 1513 (Kα)

3p ! 1s 2099.19 1823.51 2126 (Kβ)

3p ! 2s 328.00 292.40 307 (Lα)

3d ! 2p 328.00 327.61 330.26 - 334.80 307 (Lα)

4p ! 2s 442.79 407.11 444 (Lβ)

4d ! 2p 442.79 442.40 444 (Lβ)
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at the nucleus is large and strongly affected by the nuclear size effects. To see how the width of the Gaussian nuclear charge distribution affects

muonic transitions, we have calculated the transition energies in Cu for a range of ξ-values. The results can be seen in Figure 1. As the nuclear

charge distribution is getting narrower, the transition energies are nearing the values with point-like nucleus in Table 1. In our calculations, it

appears that the default Gaussian nuclear charge distribution parameters might not be optimal for precise prediction of muonic X-ray energies.

From Figure 1, we can see that for the 2p ! 1s transition, the energies cover a wide range and the experimental value could be reproduced with

another value for ξ. For the 3d ! 2p transition, however, the experimental value is above the plateau of point-like nucleus and modifying the

nuclear charge distribution would not help. This kind of fitting of the Gaussian charge distribution should not be undertaken unless other correc-

tions (eg, relativistic effects) are properly accounted for.

4.2 | Electronic structure effects

It is also interesting to ask how changes in the electronic wave function affect energy levels of the muon. We anticipated that higher muonic exci-

tation levels become more affected by the presence of electrons compared to the lower ones where the muon lies closer to the nucleus. We

investigated electronic effects on muonic X-ray energies by considering muons in differently charged ions, Ar+ and Ar−, and in different molecules,

H2O
− and CH2O

− where the muon was centered on the nucleus of the oxygen atom. The results from CASSCF calculations are presented in

Figure 2.

As expected, higher-level muonic transition energies vary more greatly between systems with different electronic structure. Notably the dif-

ferences are larger for p ! s transitions compared to d ! p transitions. In both cases, the energy differences are positive, that is the muonic X-

ray energies are larger for Ar− compared to Ar+ and similarly for H2O
− compared with CH2O

− This can be explained by considering that in the case

of Ar, the larger number of electrons in Ar− shifts upper muonic energy levels higher compared to Ar+. Intuitively, similar reasoning should apply

FIGURE 1 Dependence of muonic transition energies on the logarithm of the Gaussian nuclear charge distribution. We have calculated the

curves for the transitions given in Table 1. The vertical line denotes the default value, ξ = 2.767 � 108, for the Gaussian nuclear charge
distribution. For comparison we have depicted the experimental transition energies with dashed horizontal lines.[33] The same experimental
values are given in Table 1
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to formaldehyde and water, where the electron density at oxygen in formaldehyde is lower due to different chemical environment and hybridiza-

tion of the oxygen atom (sp3 in water vs. sp2 in formaldehyde). The trends seen in the graphs in Figure 2 show that transitions from higher-energy

muonic states are expected to be more influenced by electronic structure. Finally, it should be mentioned that the muonic energy levels consid-

ered are still fairly low. In the case of hydrogen-like atoms, electronic 1s orbitals and muonic nμs orbitals become of similar size when the muonic

principal quantum number nμ is 14. When the muon resides in the higher energy states, the shielding of nuclear charge by it is no longer as effi-

cient.[29] In that case, electronic basis sets meant for the element with nuclear charge Z − 1 may not be accurate enough and the question of

which basis sets to choose is no longer trivial. This should be kept in mind when one is interested in looking at states with higher muonic quantum

number.

5 | CONCLUSIONS

In this work, we have developed primitive muonic basis sets for the elements in the first three rows and Cu. The use of the basis sets was demon-

strated in many-electron-and-one-muon calculations of atoms and molecules to predict muonic X-ray energies. We re-emphasized the importance

of considering a finite-sized nuclear model in calculations of muonic systems. Additionally, we studied the effects of chemical environment on

muonic energy levels. Our results suggest two directions for future investigation. First, while using a Gaussian model for the nucleus can improve

the accuracy of predicted muonic X-ray energies, the choice of default parameters might not be best for this application. We propose that com-

paring experimental muonic X-ray energies with corresponding predicted X-ray energies could be used to assess the nuclear charge distribution

models and perhaps develop more accurate ones. This would first require considering the importance of several additional corrections such as

vacuum polarization, spin-orbit coupling, and relativistic effects. Second, we demonstrated how changes in electronic structure influence muonic

X-ray energies. In our calculations, the changes were less than 1 eV. However, by considering higher-energy muonic states, these effects are

expected to become larger and hopefully more significant for spectroscopic applications. Studying it further would require development of new,

larger, and possibly contracted muonic basis sets. We hope that by including the muonic basis sets in the OpenMolcas software, this work could

aid in interpreting muonic X-ray spectra.
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