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Geometry optimization of molecules in solution: Joint use of the mean field
approximation and the free-energy gradient method

I. Fdez. Galván, M. L. Sánchez, M. E. Martı́n, F. J. Olivares del Valle, and M. A. Aguilar
Departamento Quimica-Fisica, Universidad de Extremadura, Avda de Elvas s/n,
06071 Badajoz, Spain

~Received 17 June 2002; accepted 7 October 2002!

The average solvent electrostatic potential/molecular dynamics~ASEP/MD! and the free-energy
gradient methods are applied together with the multidimensional geometry optimization of
moleculesin solution. The systems studied were formamide in aqueous solution and water and
methanol in liquid phase. The solute molecules were described throughab initio quantum mechanics
methods~density dunctional theory or Møller–Plesset second order perturbation theory! while the
solvent structure was obtained from Molecular Dynamics calculations. The method is very efficient;
the increase in computation time is minimal with respect to previous ASEP/MD versions that
worked at a fixed geometry. Despite the use of the mean field approximation in the calculation of
the solvent reaction potential the agreement with previous theoretical calculations was satisfactory.
Large changes were observed in the solute charge distribution induced by the solvent, and the solute
polarization was accompanied by an increase in the solvent structure around the solute. ©2003
American Institute of Physics.@DOI: 10.1063/1.1525798#
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I. INTRODUCTION

The optimization of structures~minima or saddle points!
in solutionis a complicated problem because of the difficu
in properly accounting for the influence of the bulk solve
polarization and the thermal effects. In the case of the b
solvent polarization, especially in polar liquids, it is compu
sory to consider a great number of solvent molecules so a
adequately describe the electric field generated by the
vent in the volume occupied by the solute, while to inclu
thermal effects a great number of configurations have to
considered, with the computational cost that these two
tors imply. One way to simplify the problem is by havin
recourse to the Mean Field Approximation~MFA!.1,2 The
introduction of the MFA has been a constant aspect of
development of solvent effect theories. The different qu
tum versions of continuum models,3 for instance, make use
of this approximation. More recently, several methods4,5

have been proposed that combine MFA with a detailed
scription of the solvent structure obtained from an exten
version of the reference interaction site model6 or from Mo-
lecular Dynamics simulations.7

In previous papers5 our group has developed a nonstan
ard Quantum Mechanics/Molecular Mechanics method~QM/
MM ! that makes use of the MFA. The method, deno
ASEP/MD, is based on the introduction of the Averaged S
vent Electrostatic Potential obtained from Molecular Dyna
ics simulation into the solute molecular Hamiltonian. As
other mean field theories the mean value of the energie
the different configurations is replaced by the energy of
average configuration that in our case is obtained from M
calculations. Its main advantage is that it permits reduc
the number of quantum calculations from several thousan
4–8 without introducing significant errors either in the e
ergy or the molecular properties. The method has been
2550021-9606/2003/118(1)/255/9/$20.00
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cessfully applied to the study of liquids5~e!,5~f! and to the de-
termination of solvent shifts in the UV/VIS spectra.5~b!–5~d!.

Several strategies can be used in QM/MM calculatio
to obtain optimal structuresin solution. In traditional
QM/MM methods,8 for instance, the internal degrees of fre
dom are considered to be additional dynamical variables s
ject to thermal fluctuations. At each step, the total for
~solute1solute contributions! over the solute atoms is calcu
lated and a new geometry is obtained by integration of
equations of motion. A mean geometry can then be obtai
by averaging over the different solute structures.

In a second set of methods, known as free-energy gr
ent methods9–11 the forces felt by the solute atoms are o
tained from QM/MM simulations where the solute molecu
has a fixed structure. The free-energy surface~FES! is de-
fined as the time average of the forces acting on each ato
a solute molecule over the equilibrium distribution for a
solvent molecules.10 From the mean gradient, a new geom
etry can be generated and the process is repeated unt
gradient converges to a desired precision. While the m
advantage of this method is that it permits obtaining b
stable and transition states, it is at the expense of nota
increasing the simulation time and hence the computatio
cost with respect to traditional QM/MM.

Because of its use of average quantities, the free-en
gradient method seems especially adequate to use tog
with the MFA. Their joint application permits a considerab
saving of computation time. In what follows, we presen
method of obtaining geometries and propertiesin solution
that combines the FEG method with ASEP/MD. The meth
permits obtaining both stable and transition states. Beca
of the small number of quantum calculations that it involve
the solute description can be performed at exactly the s
level as is used forin vacuocalculations. In this work we
© 2003 American Institute of Physics
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restrict ourselves to the application of the ASEP/MD mo
to the problem of obtaining optimized structuresin solution.
We postpone the more complicated case of searching
transition states to a future paper.

The rest of the paper is organized as follows: In Sec
the computational method is explained. Section III provid
a technical details; specifically, we discuss the nature
magnitude of the gradient fluctuations and how they aff
the optimization procedure. The results are discussed in
IV. The final section presents the main conclusions.

II. METHOD

The main characteristic of the ASEP/MD has been d
cussed elsewhere.5 Here, we center on the special features
its application to the determination of critical points on p
tential energy surfaces.

As in traditional QM/MM methods,12 in ASEP/MD, the
energy and state function of the solvated solute molec
are obtained by solving the effective Schro¨dinger equation,

~ĤQM1ĤQM/MMuC5EuC. ~1!

The interaction term,ĤQM/MM takes the following form:

ĤQM/MM5ĤQM/MM
elect 1ĤQM/MM

vdw , ~2!

ĤQM/MM
elect 5E dr• r̂•^V̂s~r ;r!&, ~3!

wherer̂ is the solute charge density and the brackets den
a statistical average. The term̂V̂s(r ;r)& is the average elec
trostatic potential generated by the solvent at the posi
r,and is obtained from MD calculations where the solu
molecule is represented by the charge distributionr and a

geometry fixed during the simulation. The termĤQM/MM
vdw is

the Hamiltonian for the van der Waals interaction, in gene
represented by a Lennard-Jones potential. Given that the
vent structure, and hence the ASEP, is a function of the
ute charge density, Eqs.~1! and ~3! have to be solved itera
tively. In general, only a few cycles of quantum calculatio
molecular dynamics simulations are needed for converge

Next, we shall describe the application of the MFA to t
determination of the gradient and Hessian. By way of co
parison, and to determine the nature of the approxima
introduced, we first present their expressions when the M
is not used. In this case the force on the free-energy sur
~FES! is9–11

F~r !52
]G~r !

]r
52 K ]V~r !

]r L , ~4!

whereG(r ) is the free-energy,V is the sum of the contribu
tions associated with the interaction with the other atoms
the solute molecule,Vi , and with the solute–solvent interac
tion energy,Vs and the brackets denote a statistical avera

The Hessian is

H K ]2V

]r ]r L 2b K ]V

]r

]VT

]r L 1b K ]V

]r L K ]V

]r L T

, ~5!

H5 K ]2V

]r ]r L 2b@^F2&2b&F&2], ~6!
l
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where the superscriptT denotes the transposition andb
51/RT. The last term in Eq.~6! is related to the therma
fluctuation of the force.

Now we shall analyze how we can obtain the force a
the Hessian in ASEP/MD.

Because we assume a fixed geometry and a fixed ch
distribution of the solute during the simulation, the avera
value of the force can be replaced by the force of the m
configuration,

F~r !52
]^V&
]r

, ~7!

H5
]2^V&
]r ]r

2b K ]V

]r

]VT

]r L 2b
]^V&
]r

]^V&T

]r
. ~8!

In this point we introduce an additional approximation: w
neglect the force fluctuations. Given that the Hessian is u
only to accelerate the optimization procedure, this appro
mation has no effect on the optimized geometries. In a
case, preliminary estimations show that the errors introdu
in the trace of the Hessian in the formamide–water syste
when we neglect the fluctuation term is lower than 5%. W
this approximation the Hessian reads

H5
]2^V&
]r ]r

. ~9!

Equations~7! and~9! are the equations traditionally used b
mean field theories3,13 and are the ones that we will follow in
the present paper.

Figure 1 shows the scheme of the optimization pro
dure with ASEP/MD. The procedure is as follows:

~1! We begin by obtaining through anab initio calculation
the in vacuo solute charge distribution that is used
input in the molecular dynamics calculation in the ne
step;

FIG. 1. Geometry optimization scheme.
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~2! From the MD data, we obtain the ASEP,^V̂s(r )&, and
the solvent contribution to the gradient and Hessian;

~3! The ASEP is introduced into the molecular Hamiltoni
of the solute. The electronic wave function of the solu
now in solution, can be obtained by solving the asso
ated effective Schro¨dinger equation;

~4! The solute contributions to the gradient and Hessian
calculated and added to the solvent contribution. A n
geometry is obtained;

~5! With the new geometry the electronic wave function
the solutein solutionis obtained and a new solute char
distribution is calculated. The new geometry and sol
charge distribution are then used as an input in a n
molecular dynamics calculation@step~2!#. This process
is repeated until convergence in the free-energy
reached.

At each step of the self-consistent process, the so
charges used in the MD calculation were obtained by fitt
the molecular electrostatic potential of the solute molecule
the presence of the solvent perturbation in the standard
The CHELP program was used.14

The procedure for obtaining the new geometry from
old one, step~4!, deserves more attention. We have check
three possibilities:

~1! Using only the force to determine the position of t
next point on the free-energy surface

qk115qk1Fk . ~10!

~2! Finding the following point using the force and the He
sian,

qk115qk1Hk
21Fk . ~11!

~3! Performing the complete optimization of the solute g
ometry at each step of the cycle. This last option is
most expensive computationally, and does not se
worthwhile, especially if one takes into account that t
optimized geometry will be distorted in the next cyc
due to the fluctuation in the gradient.

In the three cases the forces and Hessians are calcu
analytically. Compared with traditional QM/MM models th
errors introduced by the above procedure are the followi

~1! The solute charge distribution obtained by solvi
the Schro¨dinger equation in the presence of a mean per
bation,~r!, is different from the averaged value of the solu
charge distribution obtained for each solvent configurati
i.e., r̄Þ^r&. This difference appears because in traditio
QM/MM methods the solute charge distribution is fitted
each step to the new solvent configuration, which is not p
mitted in MF theories. Given that̂Vi& and ^Vs& are both
functions ofr, this approximation affects the energy, the g
dient, and the Hessian that are not calculated with the cor
solute charge distribution. The magnitude of the errors in
duced by the MFA in the calculation of the energy and
solute charge distribution has been addressed in prev
papers,2,5 and was evaluated to be,5% for the energy and
1% for the dipole moment. The magnitude of the errors
,
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troduced by the MFA in the magnitude of the gradient
discussed below.

~2! In the calculation of the Hessian, the fluctuations
the force, the last term in Eq.~6!, are neglected. Given tha
the Hessian is used only to accelerate the optimization p
cedure, this approximation, in principle, has not effect on
optimization of the geometry, and will not be considered
this paper.

III. TECHNICAL DETAILS

In this paper, the model described above is applied to
study of several molecules in the condensed phase. We s
ied both liquids and solutions, and employ different levels
calculation in order to check the performance of the meth
in different situations. As an example of a solution, we to
formamide in an aqueous solution. The basis set15 used was
NCO~711/411/1!H~41/1! and the solute wave function wa
obtained with DFT techniques. During the DFT calculati
the density-gradient-corrected correlation functional p
posed by Perdew16 and Becke’s17 exchange functional were
used.

As examples of liquids, we took water and methanol.
both cases, the basis set used was the aug-cc-pVDZ f
Dunning et al.18 The level of calculation was the secon
order Møller–Plesset~MP2! perturbation theory for the wa
ter and DFT for the methanol. The functional was the sa
as used for formamide.

In the three systems the initial solute geometry was t
optimized in the gas phase at the level and for the basis
indicated above. However, in each case a different proced
was used to obtain the next solute geometry. In formam
the geometry was completely optimized at each cycle of
ASEP/MD procedure. In methanol, the gradient and Hess
were used to determine the next geometry. Lastly, in wa
only the gradient was used. All the quantum calculatio
were done using theGAUSSIAN98 package.19

The MD calculations were performed using the progra
MOLDY.20 In each case, 128~methanol! or 215 ~water and
formamide! molecules were simulated at a fixed intram
lecular geometry by combining Lennard-Jones interatom
interactions with electrostatic interactions. In th
formamide–water and water–water systems, the 214 sol
molecules were simulated by the TIP3P~Ref. 21! model at a
fixed intramolecular geometry. The formamide–water pot
tial parameters were taken from Jorgensen and Swens22

The geometry and parameters of the classical methanol m
ecules were taken from Jorgensenet al.23 Periodic boundary
conditions were applied, and spherical cutoffs were used
truncate the molecular interactions at 9.0 Å. A time step
0.5 fs was used. The electrostatic interaction was calcula
with the Ewald method.22 The temperature was fixed at 29
K by using the Nose´–Hoover24 thermostat. Except in the
cases expressly indicated, each MD calculation simula
was run for 150 000 time steps~50 000 equilibration, 100 000
production!.
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IV. RESULTS AND DISCUSSION

Prior to any geometry optimization, there are several
merical questions to consider. First, we have to determine
criterion of convergence of the gradient for optimizationsin
solutionusing the FEG method. The problem arises beca
in solution, to determine the solvent contribution to the gr
dient we need to perform a thermodynamic average. Gi
the finite time of the simulations, calculations performed u
der the same conditions but starting from different points
the configuration space will yield different values of the g
dient ~and any other property, obviously!. As a consequence
in solution, the precision of a geometry optimization is lim
ited by the gradient fluctuations associated with the fin
time of the simulation. Table I gives the mean value of t
gradient on the free-energy surface of formamide in aque
solution, and the magnitude of the largest standard devia
of the gradient~lsdg! as a function of the length of the simu
lation for a nonoptimized geometry. The root mean squ
~rms! gradient is also shown. To obtain these values we p
formed a MD calculation of 300 ps with a time step of 0.5
and fixed solute geometry. Next, averages of the grad
were calculated making use of the MFA at intervals of 50
and 100 ps. The lsdg can be taken as a measure of the
cision at which the optimization can be performed. With
ps simulations, the lsdg is 0.0020 hartree/bohr. This va
reduces to 0.0005 hartree/bohr when we double the sim
tion time. Figure 2 shows the molecular Cartesian frame
the formamide molecule.

Next, we shall analyze the magnitude of the errors t
the MFA introduces in the gradient evaluation. Table II co
pares the gradient values for formamide in aqueous solu
when the MFA is used and when it is not. From a 75~25
150! ps simulation, we chose 1000 configurations. For e

TABLE I. Mean value and standard deviation~in 1023 hartree/bohr! of the
total Cartesian free energy gradient of formamide in aqueous solution
well as their respective rms. The ASEP was calculated every 50 or 10
and the gradient was obtained.

50 ps 100 ps

Mean Std. dev. Mean Std. dev.

x 20.765 1.154 20.706 0.173
N1 y 20.892 0.372 20.798 0.262

z 20.237 0.367 20.212 0.045
x 20.054 0.625 20.084 0.175

H2 y 0.616 0.348 0.632 0.132
z 0.182 0.342 0.151 0.098
x 20.316 0.169 20.288 .097

H3 y 20.424 0.545 20.498 0.343
z 0.110 0.141 0.101 0.074
x 23.009 2.004 23.040 0.261

C4 y 20.682 0.557 20.662 0.273
z 0.003 0.046 20.011 0.028
x 21.820 1.510 21.695 0.496

O5 y 21.389 0.727 21.400 0.179
z 0.164 0.105 0.245 0.136
x 20.054 0.063 20.051 0.048

H6 y 0.102 0.135 0.107 0.036
z 20.002 0.063 0.000 0.007

rms 0.970 0.736 0.959 0.202
-
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configuration the gradient is obtained, and then the aver
value. This value is compared with the result obtained wh
the MFA is used. In this case, from the same set of 10
configurations we calculate the ASEP, that is introduced i
the solute molecular Hamiltonian from which the gradie
can be obtained. The magnitude of the largest error
0.000 23 hartree/bohr, representing a relative error clos
3% with respect to the mean gradient. For 75 ps simulatio
this error is an order of magnitude lower than the gradi
fluctuations associated with the finite size of the simulatio
~0.0020 hartree/bohr!, and we can expect that the error in th
gradient had a negligible effect on the optimized geome
However, for 150 ps simulations or longer the error asso
ated with the MFA can become dominant, and sets a limi
the precision at which an optimization can be perform
when the MFA is used.

Next, we shall consider the results for the optimizati
of several moleculesin solution. The first system we studied
was formamide in aqueous solution. We chose this sys
because thein solutiongeometry for this system had prev
ously been considered by different authors using both c
tinuum models and QM/MM methods.8 Furthermore, it can
be seen as the simplest example of a peptide bond. To c

FIG. 2. Molecular Cartesian frame of formamide molecule.

as
ps

TABLE II. Total Cartesian gradient of the free energy~in 1023 hartree/bohr!
of a molecule of formamide in aqueous solution. The Lennard-Jones co
bution was not included.

Mean of 1000
configurations

Average
configuration

x 12.914 12.827
N1 y 3.858 3.831

z 0.084 0.085
x 23.365 23.132

H2 y 3.049 2.928
z 0.053 0.049
x 21.116 21.081

H3 y 25.347 25.081
z 20.006 20.004
x 226.864 226.816

C4 y 5.473 5.487
z 20.002 20.010
x 18.255 17.862

O5 y 210.052 29.788
z 20.041 20.026
x 1.567 1.571

H6 y 22.136 22.240
z 20.004 0.002

rms 8.898 8.807
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the effect of the gradient fluctuation on the optimization p
cedure, we performed many more cycles than strictly nec
sary. Figure 3 displays the root mean square change of
gradient on the free-energy surface during the optimiza
of formamide in aqueous solution obtained with 75~25150!
ps simulations. Convergence is reached in 5–6 cycles. F
this point, the gradient begins to fluctuate around a rms g
dient value of about 0.0015 hartree/bohr. This value is so
what lower than the values obtained by other authors w
also used the FEG method. For instance, Okuyama-Yos
et al.10 in the optimization of glycine obtain 0.0025 hartre
bohr, and Hiraoet al.11 in the transition state of the Menshu
kin reaction between ammonia and methyl chloride obt
0.010 hartree/bohr. The larger values obtained by these
thors are probably related to the shorter duration of the si
lations, 15110 ps and 10110 ps, respectively. Our gradien
value is one order of magnitude larger than the thresho
used for in vacuocalculations~in Gaussian,19 for instance,
the maximum and rms gradients are 0.000 45 and 0.0
hartree/bohr, respectively!. Contrary to what was expected

FIG. 3. Root mean square change in free-energy surface of formamid
aqueous solution. 50 ps.~filled circles!, 150 ps.~open circles!, and 25 ps.
~dotted line, diamonds! production simulations.

FIG. 4. Polarization free-energy change of formamide in aqueous solu
during the optimization procedure. Symbols: see Fig. 3.
-
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he
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3

the rms gradient value, Fig. 3, is not reduced when the s
of the simulation is increased. Only its fluctuations decrea
This fact is probably an artifact of the ASEP/MD metho
related to the different representations of the solute cha
distribution during the simulation~classical, through the
point charges! and the optimization~quantum, through the
wave function!.

Figure 4 shows the evolution of the solute polarizati
free-energy during the optimization procedure. As befo
convergence is reached in 5–6 cycles, whenDG begins to
fluctuate. The free energies were calculated by the fr
energy perturbation method.25 As expected, the size of th
fluctuations decreases with increasing length of the sim
tion time, but the average value is almost the same in all
cases~27.161.4 kcal/mol,27.060.7 kcal/mol, and27.1
60.4 kcal/mol for the 25, 50, and 150 ps simulations, resp
tively!. Only for the longer simulations are the fluctuatio
less than the fluctuation due to thermal effects,kBT, which is
of the order of 0.6 kcal/mol at 300 K. The same oscillato
behavior is observed for the dipole moment, see Fig. 5. T
averaged induced solute dipole moment is 2.5 D, repres

in

n

FIG. 5. Dipole moment change of formamide in aqueous solution during
optimization procedure. Symbols: see Fig. 3.

FIG. 6. O~formamide!–O~water! radial distribution function of methano
for the first~dotted line!, second~dashed line!, and the last~full line! cycles
of the ASEP/MD procedure.
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TABLE III. Optimization of the geometry of formamide. Cycle 0 is thein vacuocalculation. The average of the converged cycles and the difference bet
the in vacuoandin solutiongeometries are also shown. For comparison the results obtained in Ref. 8 are displayed as DFT/MM. Distances in angstro
in degrees.

Distance
or

angle

ASEP/MD ~50 ps!

0
~in vacuo! 1 2 3 4 5 10 15

N1–H2 1.017 1.022 1.025 1.028 1.030 1.031 1.030 1.029
N1–H3 1.020 1.025 1.029 1.029 1.030 1.032 1.032 1.033
N1–C4 1.359 1.343 1.335 1.334 1.331 1.329 1.331 1.329
C4–O5 1.229 1.240 1.248 1.248 1.253 1.254 1.252 1.254
C4–H6 1.114 1.109 1.107 1.106 1.106 1.105 1.106 1.105
H2–N1–H3 117.7 117.7 117.6 117.7 117.5 117.8 117.7 117.4
H2–N1–C4 122.6 121.9 121.5 121.6 121.1 120.6 121.0 120.6
N1–C4–O5 125.4 125.5 125.5 125.1 125.6 125.6 125.3 125.6
N1–C4–H6 112.1 113.0 113.5 113.8 113.7 113.8 113.9 113.8

Distance
or

angle

ASEP/MD DFT/MM

50 ps 150 ps
Average Variation Average Variation in vacuo in solution Variation

N1–H2 1.029 0.013 1.030 0.013 1.016 1.040 0.02
N1–H3 1.033 0.013 1.033 0.013 1.018 1.041 0.02
N1–C4 1.329 20.029 1.330 20.029 1.366 1.338 20.028
C4–O5 1.253 0.024 1.253 0.024 1.227 1.262 0.03
C4–H6 1.106 20.008 1.106 20.008 1.114 1.112 20.002
H2–N1–H3 117.6 20.1 117.5 20.1 119.3 119.7 0.4
H2–N1–C4 120.8 21.9 120.8 21.9 121.7 119.8 21.9
N1–C4–O5 125.5 0.2 125.6 0.2 124.4 124.6 0.2
N1–C4–H6 113.8 1.8 113.8 1.7 112.5 114.2 1.7
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ing an increase of almost 60% with respect to thein vacuo
value. The polarization of the solute is accompanied b
parallel increase in the structure of the solvent around
solute. This is clearly observed in the evolution of t
oxygen–oxygen radial distribution function with the numb
of cycles of the self-consistent process. As polarizat
progresses, the height of the first peak increases and m
toward shorter distances. During this process, the so
charge distribution and the solvent structure become m
ally equilibrated~Fig. 6!.

The computed geometries in gas phase and solution
listed in Table III. The finalin solutiongeometries are aver
age values over the different simulations~we give the aver-
ages for 50 ps and 150 ps simulations!. For comparison, we
also include results obtained using the DFT/MD method
veloped at Nancy. The first conclusion is that the optimiz
geometry depends very little on the size of the simulati
The averages obtained with the 50 ps and 150 ps simulat
are almost identical. Furthermore, despite the gradient fl
tuations associated with the simulation size, the solute ge
etries are very stable: the standard deviations are,0.001 Å
for the bond lengths and 0.2° for the bond angles. Althou
our values are not directly comparable with the results
tained by Chalmet and Ruiz-Lo´pez8 due to small differences
in the basis set and the density functional, they are v
similar qualitatively and quantitatively: the solvent induce
decrease in the CN distance, an increase in the CO dista
and negligible variations in the bond angles. These res
can be interpreted simply by the stabilization of the zwit
rionic electronic configuration by the electrostatic solut
a
e
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.
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ry
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solvent interactions, as was confirmed by the behavior of
net atomic charges obtained by aCHELP ~Ref. 14! population
analysis. As expected, the electronic density of the N at
decreases from gas phase to solution, whereas it increas
the oxygen atom. The strong polarization of the formam
molecule in aqueous solution is manifested in the chang
the dipole moment from 4.1 Din vacuoto 6.6 D in solution.

Next, we studied the water molecule. In this case,
order to check the performance of the proposed met
when different calculation levels are used, the calculatio
were performed at the MP2 level with an aug-cc-pVDZ ba

FIG. 7. Root mean square change in free-energy surface of water.
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set.17 As was the case for formamide, convergence is reac
in about 4–5 cycles of the ASEP/MD procedure~see Fig. 7!.
The rms gradient value is also very similar, about 0.00
hartree/bohr. The fluctuations in the free-energy, Fig. 8,
about 0.2 kcal/mol, clearly less than the fluctuations due
thermal effects. The water molecule undergoes a strong
larization during the solution procedure. The induced dip
moment, 0.77 D, compares well with the results obtained
other authors,26 and with the estimated experimental27 value,
0.70–1.0 D. The geometry changes are displayed in Fig
The OH distance increases by 0.01560.002 Å. The bond
angle does not change appreciably.

Finally, we studied liquid methanol. The basis set was
aug-cc-pVDZ~Ref. 17! quality. The calculations were pe
formed at the DFT level. Convergence was reached in 3
cycles, Fig. 10,13 and the rms gradient was somewhat low
in this case, 0.0008 hartree/bohr, than for formamide
water. The free-energy fluctuations, Fig. 11, are howe
similar to those of water, about 0.3 kcal/mol. Thein solution
dipole moment was 2.30 D and the induced dipole mom
0.55 D. The methanol induced dipole moment is clea
lower than that obtained for water. This is so even thou
water’s polarizability is almost half that of methanol. Th
explanation is to be found in the number of hydrogen bo
that each system forms. Thus, while methanol can form
hydrogen bonds, this number increases to four in the cas
water. The changes in the geometry originated by the solv
are also less in methanol than in water. Only the OH bon
increased by about 0.008 Å. The rest of the molecule, F
12, does not change appreciably. As was the case for
water and formamide, the fluctuations in the gradient h

FIG. 8. Polarization free-energy change of a liquid water molecule du
the optimization procedure.

FIG. 9. Optimized geometries of water in the gas phase~a! and in solution
~b!.
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no appreciable effect on the geometry: the standard de
tions are 0.001 Å for the bonds and 0.1°–0.4° for the ang

The number of cycles necessary to reach convergenc
very similar in the three systems considered, although
each case a different procedure was used to calculate the
solute geometry in the ASEP/MD cycle~calculation of the
gradient, gradient and Hessian, or of the complete optimi
geometry!. Given that the computational times are very d
ferent depending on the method used, the best option i
use the simplest procedure, i.e., to calculate the new ge
etry by using only the gradient.

V. SUMMARY

In this article we have proposed a method for the op
mization of moleculesin solutionthat makes use of the mea
field approximation and the free-energy gradient meth
The method yields optimized stable geometriesin solutionin
a very efficient way: the increase in computational time
minimal with respect to previous versions of the ASEP/M
that worked at a fixed geometry. As a new ingredient,
need only calculate the gradient, or the gradient and the H
sian, at each cycle of the ASEP/MD procedure. In gene
5–6 cycles were enough to reach convergence. We have

g FIG. 10. Root mean square change in free-energy surface of methan

FIG. 11. Polarization free-energy change of a liquid methanol molec
during the optimization procedure.
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shown that the fluctuation in the gradient and free-energy
related to the time of simulation. Except for formamid
where it was necessary to perform longer simulations~150
ps!, for water and methanol simulations of 75 ps yielded
free-energy fluctuations that were lower than the therm
contribution. In the three molecules studied, and despite
gradient and free-energy fluctuations, the geometries
tained were very stable. The standard deviations w
,0.001 Å for the bond length and,0.2° for the bond angles

It is interesting to note that, for the molecules cons
ered, the solvent only induces small changes in the so
geometry. In fact, the influence that the basis set or the le
of calculation has on the geometry is larger than the solv
influence. For instance, in the water system, thein vacuoOH
bond distance varied by about 0.022 Å from the HF to
MP2 level, and by 0.031 from the HF to the DFT level.
similar behavior was presented by the other two syste
The solvent, however, induced large changes in the so
charge distributions, which became strongly polarized.
creases in the dipole moment between 30%–60% w
found. At the same time, the polarization of the solute w
accompanied by an increase in the structure of the sol
around the solute. The first peak of the radial distribut
function shifted to shorter distances and its height increa
by several units.

In the present ASEP/MD version there are two possi
sources of error: the use of the mean field approximation
the different representations of the electrostatic solute ch
distribution during the simulation~classical! and the optimi-
zation ~quantum mechanical!. In this and a previous pape
we have shown that the MFA only introduces small errors
the magnitudes evaluated~dipole moment, interaction ene
gies, gradients, etc.! while it allows one to greatly reduce th
number of quantum calculations to perform. The errors as
ciated with the classical representation of the solute du
the MD calculation can be reduced by improving the sol
charge representation through the inclusion of additio
charges on the solute molecule. We are working in this
rection. In any case, these errors seem negligible when c
pared with the errors introduced by the rest of the appro
mations used in most QM/MM methods~neglect of
intermolecular electron exchange, parametrization of
Lennard-Jones potential, etc.!
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FIG. 12. Optimized geometries of methanol in the gas phase~a! and in
solution ~b!.
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