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Geometry optimization of molecules in solution: Joint use of the mean field
approximation and the free-energy gradient method
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The average solvent electrostatic potential/molecular dynatdg&EP/MD) and the free-energy
gradient methods are applied together with the multidimensional geometry optimization of
moleculesin solution The systems studied were formamide in aqueous solution and water and
methanol in liquid phase. The solute molecules were described theduigiitio guantum mechanics
methods(density dunctional theory or Mgller—Plesset second order perturbation thebitg the
solvent structure was obtained from Molecular Dynamics calculations. The method is very efficient;
the increase in computation time is minimal with respect to previous ASEP/MD versions that
worked at a fixed geometry. Despite the use of the mean field approximation in the calculation of
the solvent reaction potential the agreement with previous theoretical calculations was satisfactory.
Large changes were observed in the solute charge distribution induced by the solvent, and the solute
polarization was accompanied by an increase in the solvent structure around the sol@@03©
American Institute of Physics[DOI: 10.1063/1.1525798

I. INTRODUCTION cessfully applied to the study of liquid®>" and to the de-
o N . termination of solvent shifts in the UV/VIS specff@-59.
The optimization of structure@ninima or saddle poinjs Several strategies can be used in QM/MM calculations

in solutionis a complicated problem because of the difficulty to obtain optimal structuresn solution In traditional

in properly accounting for the influence of the bulk solventgm/MM methods® for instance, the internal degrees of free-
polarization and the thermal effects. In the case of the bulljom are considered to be additional dynamical variables sub-
solvent polarization, especially in polar liquids, itis compul-ject to thermal fluctuations. At each step, the total force
sory to consider a great number of solvent molecules o as {Qq|ytet solute contributionsover the solute atoms is calcu-
adequately describe the electric field generated by the sojziaq and a new geometry is obtained by integration of the

vent in the volume occupied by the solute, while to includeequations of motion. A mean geometry can then be obtained
thermal effects a great number of configurations have to bBy averaging over the different solute structures

f;gsi'?nerled’ OV\rlllttahv;[/ge fg@%‘ﬁ?;?ﬁé Corsotb}zzf }Zes € r?g\c/)ir:ac- In a second set of methods, known as free-energy gradi-
Ply. y b P y 9 ent method&™ the forces felt by the solute atoms are ob-

recourse to the Mean Field ApproximatidMFA)."* The tained from QM/MM simulations where the solute molecule

development of solvent effect theories. The different quan‘?1as a fixed structure. The free-energy Surféees is de-

turn versions of continuum modeldor instance, make use fined as the time average of the forces acting on each atom of

of this approximation. More recently, several metHctis a solute molecule over the equilibrium distribution for all
. y 0 .
have been proposed that combine MFA with a detailed de§OIVent moleculeS From the mean gradient, a new geom-

scription of the solvent structure obtained from an extende§!Y can be generated and the process is repeated until the
version of the reference interaction site médal from Mo-  dradient converges to a desired precision. While the main
lecular Dynamics simulatior?s. advantage of this method is that it permits obtaining both
In previous papefsour group has developed a nonstand-Stable and transition states, it is at the expense of notably
ard Quantum Mechanics/Molecular Mechanics metf@h/  increasing the simulation time and hence the computational
MM) that makes use of the MFA. The method, denoted®0St With respect to traditional QM/MM.
ASEP/MD, is based on the introduction of the Averaged Sol- ~ Because of its use of average quantities, the free-energy
vent Electrostatic Potential obtained from Molecular Dynam-gradient method seems especially adequate to use together
ics simulation into the solute molecular Hamiltonian. As in With the MFA. Their joint application permits a considerable
other mean field theories the mean value of the energies @aving of computation time. In what follows, we present a
the different configurations is replaced by the energy of armethod of obtaining geometries and propertiessolution
average configuration that in our case is obtained from MDhat combines the FEG method with ASEP/MD. The method
calculations. Its main advantage is that it permits reducingpermits obtaining both stable and transition states. Because
the number of quantum calculations from several thousand tof the small number of quantum calculations that it involves,
4-8 without introducing significant errors either in the en-the solute description can be performed at exactly the same
ergy or the molecular properties. The method has been sutevel as is used fom vacuo calculations. In this work we
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restrict ourselves to the application of the ASEP/MD model
to the problem of obtaining optimized structuiassolution
We postpone the more complicated case of searching fo
transition states to a future paper. l

The rest of the paper is organized as follows: In Sec. Il MD calculation
the computational method is explained. Section Il provides Ty
a technical details; specifically, we discuss the nature anc
magnitude of the gradient fluctuations and how they affect [H+VI¥=EY¥
the optimization procedure. The results are discussed in Se€{  New geometry and

IV. The final section presents the main conclusions. solute charge
distribution

Hoge = poge

A 4

y
Il. METHOD Gradient

The main characteristic of the ASEP/MD has been dis-
cussed elsewhereHere, we center on the special features of
its application to the determination of critical points on po- Converge
tential energy surfaces.

As in traditional QM/MM method$? in ASEP/MD, the
energy and state function of the solvated solute molecules
are obtained by solving the effective Sctiimger equation,

Solute properties

(|:|QM+|:|QM/MM|1P:E|‘I’- 1)

. . N . FIG. 1. Geometry optimization scheme.
The interaction termi qyum takes the following form:

|:|QM/MM _ Helect + |:|vdw ) . -
QW/MM =T TQM/MM » where the superscripT denotes the transposition angl
- A =1/RT. The last term in Eq(6) is related to the thermal
HeQIE/IC/tI\/IM:f dr-p-(Vy(r;p)), (3 fluctuation of the force.
. ) Now we shall analyze how we can obtain the force and
wherep is the solute charge density and the brackets denotg,e Hessian in ASEP/MD.
a statistical average. The tef¥Ws(r;p)) is the average elec- Because we assume a fixed geometry and a fixed charge
trostatic potential generated by the solvent at the positiojistribution of the solute during the simulation, the average

r.and is obtained from MD calculations where the soluteyalue of the force can be replaced by the force of the mean
molecule is represented by the charge distribuioand a  configuration,
dw

geometry fixed during the simulation. The tek M/MM IS V)

the Hamiltonian for the van der Waals interaction, in general ~ F(r)=—- —~ (7)
represented by a Lennard-Jones potential. Given that the sol- or

vent structure, and hence the ASEP, is a function of the sol- F2(V) oV ovT VY o(V)T

ute charge density, Eqél) and (3) have to be solved itera- H= ror <(7_r a_r> B o (8)

tively. In general, only a few cycles of quantum calculation/
molecular dynamics simulations are needed for convergencén this point we introduce an additional approximation: we
Next, we shall describe the application of the MFA to the neglect the force fluctuations. Given that the Hessian is used
determination of the gradient and Hessian. By way of com-only to accelerate the optimization procedure, this approxi-
parison, and to determine the nature of the approximatiomation has no effect on the optimized geometries. In any
introduced, we first present their expressions when the MFA&ase, preliminary estimations show that the errors introduced
is not used. In this case the force on the free-energy surfada the trace of the Hessian in the formamide—water systems

(FES is®™ when we neglect the fluctuation term is lower than 5%. With
9G(r) V() this approximation the Hessian reads
FIO==—5 :_< ar > @ _ V) 9
Coaror ©)

whereG(r) is the free-energyy is the sum of the contribu-
tions associated with the interaction with the other atoms oEquations(7) and(9) are the equations traditionally used by
the solute moleculey;, and with the solute—solvent interac- mean field theori€s>and are the ones that we will follow in
tion energy,Vs and the brackets denote a statistical averagethe present paper.

The Hessian is Figure 1 shows the scheme of the optimization proce-
2V oV VT V\ JaV\ T dure with ASEP/MD. The procedure is as follows:
aror!l P\oar ar + ar [ \oarl 5 (1) We begin by obtaining through aab initio calculation

, the in vacuo solute charge distribution that is used as
_ _ 2 2 input in the molecular dynamics calculation in the next
<M> BI(F?) = B)F)?, ©®) stop:
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(2) From the MD data, we obtain the ASER/(r)), and  troduced by the MFA in the magnitude of the gradient is
the solvent contribution to the gradient and Hessian; discussed below.

(3) The ASEP is introduced into the molecular Hamiltonian ~ (2) In the calculation of the Hessian, the fluctuations of
of the solute. The electronic wave function of the solute,the force, the last term in E¢6), are neglected. Given that
now in solution can be obtained by solving the associ- the Hessian is used only to accelerate the optimization pro-
ated effective Schidinger equation; cedure, this approximation, in principle, has not effect on the

(4) The solute contributions to the gradient and Hessian ar@ptimization of the geometry, and will not be considered in
calculated and added to the solvent contribution. A newthis paper.
geometry is obtained;

(5) With the new geometry the electronic wave function of
the solutan solutionis obtained and a new solute charge
distribution is calculated. The new geometry and solute
charge distribution are then used as an input in a neW!- TECHNICAL DETAILS

molecular dynamics calculatidstep (2)]. This process . . . .
is repeated until convergence in the free-energy is In this paper, the model described above is applied to the
reached study of several molecules in the condensed phase. We stud-

ied both liquids and solutions, and employ different levels of
At each step of the self-consistent process, the solutg@lculation in order to check the performance of the method

charges used in the MD calculation were obtained by fittingh different situations. As an example of a S‘?";tion' we took
the molecular electrostatic potential of the solute molecule iformamide in an aqueous solution. The basis°sesed was

the presence of the solvent perturbation in the standard wal CO(711/411/JH(41/1) and the solute wave function was
The CHELP program was usetf. obtained with DFT techniques. During the DFT calculation

The procedure for obtaining the new geometry from thethe density-gradient-corrected correlation functional pro-

L7 H
old one, stef{4), deserves more attention. We have checked©5€d by Perdetf and Becke’s' exchange functional were
u

three possibilities: sed. o
As examples of liquids, we took water and methanol. In

(1) Using only the force to determine the position of the hoth cases, the basis set used was the aug-cc-pVDZ from
next point on the free-energy surface Dunning et al’® The level of calculation was the second-
order Mgller—PlessdiMP2) perturbation theory for the wa-

=g +Fy. 10 .
Fer1 =0k (19 ter and DFT for the methanol. The functional was the same
(2) Finding the following point using the force and the Hes- 55 ysed for formamide.
sian, In the three systems the initial solute geometry was that

-1 optimized in the gas phase at the level and for the basis sets
Gher1 =0t Hi P ) in%icated above.?—mwrzaver, in each case a different procedure
(3) Performing the complete optimization of the solute ge-was used to obtain the next solute geometry. In formamide,
ometry at each step of the cycle. This last option is thehe geometry was completely optimized at each cycle of the
most expensive computationally, and does not seenASEP/MD procedure. In methanol, the gradient and Hessian
worthwhile, especially if one takes into account that thewere used to determine the next geometry. Lastly, in water,
optimized geometry will be distorted in the next cycle only the gradient was used. All the quantum calculations
due to the fluctuation in the gradient. were done using theAussiaNgs package'
The MD calculations were performed using the program
In the three cases the forces and Hessians are calculatg@ py .2° In each case, 128methanol or 215 (water and
analytically. Compared with traditional QM/MM models the formamideé molecules were simulated at a fixed intramo-
errors introduced by the above procedure are the followinglecular geometry by combining Lennard-Jones interatomic
(1) The solute charge distribution obtained by solvinginteractions with electrostatic interactions. In the
the Schrdinger equation in the presence of a mean perturformamide—water and water—water systems, the 214 solvent
bation, (p), is different from the averaged value of the solute molecules were simulated by the TIP@Ref. 21) model at a
charge distribution obtained for each solvent configurationfixed intramolecular geometry. The formamide—water poten-
i.e., p#(p). This difference appears because in traditionatial parameters were taken from Jorgensen and Swefison.
QM/MM methods the solute charge distribution is fitted atThe geometry and parameters of the classical methanol mol-
each step to the new solvent configuration, which is not perecules were taken from Jorgensetral > Periodic boundary
mitted in MF theories. Given thatV;) and (V) are both  conditions were applied, and spherical cutoffs were used to
functions ofp, this approximation affects the energy, the gra-truncate the molecular interactions at 9.0 A. A time step of
dient, and the Hessian that are not calculated with the corre€t.5 fs was used. The electrostatic interaction was calculated
solute charge distribution. The magnitude of the errors introwith the Ewald method? The temperature was fixed at 298
duced by the MFA in the calculation of the energy and theK by using the NoseHoovef* thermostat. Except in the
solute charge distribution has been addressed in previousases expressly indicated, each MD calculation simulation
papers>® and was evaluated to be5% for the energy and was run for 150 000 time stej$80 000 equilibration, 100 000
1% for the dipole moment. The magnitude of the errors in-production).
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TABLE I. Mean value and standard deviati¢in 10”2 hartree/bohrof the H
total Cartesian free energy gradient of formamide in aqueous solution, as y
well as their respective rms. The ASEP was calculated every 50 or 100 ps x
and the gradient was obtained.
z
50 ps 100 ps O% /N\
Mean Std. dev. Mean Std. dev. C H
X —0.765 1.154 -0.706 0.173
N1 y —-0.892 0.372 -0.798 0.262
z —-0.237 0.367 -0.212 0.045 H
X —-0.054 0.625 -0.084 0.175
H2 y 0.616 0.348 0.632 0.132 FIG. 2. Molecular Cartesian frame of formamide molecule.
z 0.182 0.342 0.151 0.098
X —-0.316 0.169 -0.288 .097 . . . . .
H3 y —0.424 0.545 —0.498 0.343 configuration the gradient is obtained, and then the average
z 0.110 0.141 0.101 0.074 value. This value is compared with the result obtained when
s § :g'ggg g'gg‘?‘ :g'ggg 8'2% the MFA is used. In this case, from the same set of 1000
. 0003 0046 _0.011 0028 configurations we calculate_ the_ASEP, that is mtroduced_ into
X —1.820 1.510 —1.695 0.496 the solute mglecular Hamﬂtoman from which the gradlenf[
05 y —1.389 0.727 —1.400 0.179 can be obtained. The magnitude of the largest error is
z 0.164 0.105 0.245 0.136 0.000 23 hartree/bohr, representing a relative error close to
X —0.054 0063 —0.051 0.048 3% with respect to the mean gradient. For 75 ps simulations,
H6 y 0.102 0.135 0.107 0.036 thi . d f itude | than th dient
: —0.002 0.063 0.000 0.007 is error is an order of magnitude lower than the gradien

fluctuations associated with the finite size of the simulations

rms 0.970 0.736 0.959 0.202 (0.0020 hartree/bohrand we can expect that the error in the

gradient had a negligible effect on the optimized geometry.

However, for 150 ps simulations or longer the error associ-

ated with the MFA can become dominant, and sets a limit to

the precision at which an optimization can be performed
Prior to any geometry optimization, there are several nuwhen the MFA is used.

merical questions to consider. First, we have to determine the Next, we shall consider the results for the optimization

criterion of convergence of the gradient for optimizatioms of several moleculei solution The first system we studied

solutionusing the FEG method. The problem arises becausayas formamide in aqueous solution. We chose this system

in solution to determine the solvent contribution to the gra-because thén solutiongeometry for this system had previ-

dient we need to perform a thermodynamic average. Givenusly been considered by different authors using both con-

the finite time of the simulations, calculations performed un-tinuum models and QM/MM methodsEurthermore, it can

der the same conditions but starting from different points ofbe seen as the simplest example of a peptide bond. To check

the configuration space will yield different values of the gra-

dient (and any other property, obviouslyAs a consequence, TABLE II. Total Cartesian gradient of the free energy 10”2 hartree/bohr

in solution the precision of a geometry optimization is lim- of a molecule of formamide in aqueous solution. The Lennard-Jones contri-

ited by the gradient fluctuations associated with the finiteution was not included.

time of the simulation. Table | gives the mean value of the

IV. RESULTS AND DISCUSSION

. . . Mean of 1000 Average
gradient on the free-energy surface of formamide in aqueous configurations configuration
solution, and the magnitude of the largest standard deviation
of the gradientlsdg) as a function of the length of the simu- X 12.914 12.827
lation for a nonoptimized geometry. The root mean square N1 32’ g'ggi g'ggé
(rmg) gradient is also shown. To obtain these values we per- X _3365 3132
formed a MD calculation of 300 ps with a time step of 0.5fs  H2 y 3.049 2.928
and fixed solute geometry. Next, averages of the gradient z 0.053 0.049
were calculated making use of the MFA at intervals of 50 ps X —1.116 —1.081
and 100 ps. The Isdg can be taken as a measure of the pre- H3 32' :g'gég :g'ggi
cision at which the optimization can be performed. With 50 X _26.864 _96.816
ps simulations, the Isdg is 0.0020 hartree/bohr. This value c4 y 5.473 5.487
reduces to 0.0005 hartree/bohr when we double the simula- z —0.002 —0.010
tion time. Figure 2 shows the molecular Cartesian frame of X 18.255 17.862
the formamide molecule. 05 32/ _fg'gii :g'ggg

Next, we shall analyze the magnitude of the errors that X 1567 1571
the MFA introduces in the gradient evaluation. Table Il com-  He y —2.136 —2.240
pares the gradient values for formamide in aqueous solution z —0.004 0.002
when the MFA is used and when it is not. From a (25 ms 8.898 8.807

+50) ps simulation, we chose 1000 configurations. For each
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FIG. 3. Root mean square change in free-energy surface of formamide iFIG. 5. Dipole moment change of formamide in aqueous solution during the

aqueous solution. 50 p#filled circles, 150 ps.(open circley and 25 ps. optimization procedure. Symbols: see Fig. 3.
(dotted line, diamondsproduction simulations.

the rms gradient value, Fig. 3, is not reduced when the size

the effect of the gradient fluctuation on the optimization pro-Of the simulation is increased. Only its fluctuations decrease.
cedure, we performed many more cycles than strictly necestNiS fact is probably an artifact of the ASEP/MD method,
sary. Figure 3 displays the root mean square change of tr{élat_ed to the d_|fferent representations _of the solute charge
gradient on the free-energy surface during the optimizatiolistribution during the simulatior(classical, through the

of formamide in aqueous solution obtained with(25+50) ~ Point chargesand the optimizatior(quantum, through the

ps simulations. Convergence is reached in 5-6 cycles. FroMjave function. _ o
this point, the gradient begins to fluctuate around a rms gra- Figure 4 shows the evolution of the solute polarization
dient value of about 0.0015 hartree/bohr. This value is soméf€€-energy during the optimization procedure. As before,
what lower than the values obtained by other authors wh&onvergence is reached in 5-6 cycles, wied begins to
also used the FEG method. For instance, Okuyama-Yoshidi!Ctuate. The free energies were calculated by the free-
et alX%in the optimization of glycine obtain 0.0025 hartree/ €N€rgy perturbation meth&a:As expected, the size of the
bohr. and Hiracet al1tin the transition state of the Menshut- fluctuations decreases with increasing length of the simula-
kin reaction between ammonia and methyl chloride obtairfiOn time, but the average value is almost the same in all the
0.010 hartree/bohr. The larger values obtained by these ag@Ses(—7.1*=1.4 kcal/mol, =7.0=0.7 kcal/mol, and—7.1
thors are probably related to the shorter duration of the simu=0-4 kcal/mol for the 25, 50, and 150 ps simulations, respec-
lations, 15+10 ps and 1610 ps, respectively. Our gradient tively). Only for the longer simulations are the fluctuation
value is one order of magnitude larger than the threshold!§SS than the fluctuation due to thermal effekgs], which is
used forin vacuo calculations(in Gaussiart? for instance, ~ Of the order of 0.6 kcal/mol at 300 K. The same oscillatory
the maximum and rms gradients are 0.00045 and 0.000 Behavior is observed for the dipole moment, see Fig. 5. The
hartree/bohr, respectivelyContrary to what was expected, averaged induced solute dipole moment is 2.5 D, represent-
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FIG. 6. Qformamide—O(watep radial distribution function of methanol
FIG. 4. Polarization free-energy change of formamide in aqueous solutioffor the first(dotted ling, seconddashed ling and the lastfull line) cycles
during the optimization procedure. Symbols: see Fig. 3. of the ASEP/MD procedure.
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TABLE lIl. Optimization of the geometry of formamide. Cycle 0 is timevacuocalculation. The average of the converged cycles and the difference between
thein vacuoandin solutiongeometries are also shown. For comparison the results obtained in Ref. 8 are displayed as DFT/MM. Distances in angstrom, angles
in degrees.

ASEP/MD (50 p9

Distance
or 0

angle (in vacuog 1 2 3 4 5 10 15
N1-H2 1.017 1.022 1.025 1.028 1.030 1.031 1.030 1.029
N1-H3 1.020 1.025 1.029 1.029 1.030 1.032 1.032 1.033
N1-C4 1.359 1.343 1.335 1.334 1.331 1.329 1.331 1.329
C4-05 1.229 1.240 1.248 1.248 1.253 1.254 1.252 1.254
C4-H6 1.114 1.109 1.107 1.106 1.106 1.105 1.106 1.105
H2-N1-H3 117.7 117.7 117.6 117.7 1175 117.8 117.7 117.4
H2-N1-C4 122.6 121.9 1215 121.6 121.1 120.6 121.0 120.6
N1-C4-05 125.4 125.5 1255 125.1 125.6 125.6 125.3 125.6
N1-C4-H6 112.1 113.0 1135 113.8 113.7 113.8 113.9 113.8

. ASEP/MD DFT/MM
Distance
or 50 ps 150 ps

angle Average Variation Average Variation in vacuo in solution Variation
N1-H2 1.029 0.013 1.030 0.013 1.016 1.040 0.024
N1-H3 1.033 0.013 1.033 0.013 1.018 1.041 0.023
N1-C4 1.329 —0.029 1.330 —0.029 1.366 1.338 —-0.028
C4-05 1.253 0.024 1.253 0.024 1.227 1.262 0.035
C4-H6 1.106 —0.008 1.106 —0.008 1.114 1.112 —0.002
H2-N1-H3 117.6 -0.1 117.5 -0.1 119.3 119.7 0.4
H2-N1-C4 120.8 -19 120.8 -19 121.7 119.8 -1.9
N1-C4-05 125.5 0.2 125.6 0.2 124.4 124.6 0.2
N1-C4-H6 113.8 18 113.8 1.7 1125 114.2 1.7

ing an increase of almost 60% with respect to ifieyacuo  solvent interactions, as was confirmed by the behavior of the
value. The polarization of the solute is accompanied by anet atomic charges obtained by geLP (Ref. 14 population
parallel increase in the structure of the solvent around thanalysis. As expected, the electronic density of the N atom
solute. This is clearly observed in the evolution of thedecreases from gas phase to solution, whereas it increases on
oxygen—oxygen radial distribution function with the numberthe oxygen atom. The strong polarization of the formamide
of cycles of the self-consistent process. As polarizatiormolecule in aqueous solution is manifested in the change of
progresses, the height of the first peak increases and mové® dipole moment from 4.1 h vacuoto 6.6 Din solution
toward shorter distances. During this process, the solute Next, we studied the water molecule. In this case, in
charge distribution and the solvent structure become mutusrder to check the performance of the proposed method
ally equilibrated(Fig. 6). when different calculation levels are used, the calculations
The computed geometries in gas phase and solution amgere performed at the MP2 level with an aug-cc-pVDZ basis
listed in Table Ill. The finain solutiongeometries are aver-
age values over the different simulatiofvge give the aver-
ages for 50 ps and 150 ps simulatipriSor comparison, we
also include results obtained using the DFT/MD method de- 44
veloped at Nancy. The first conclusion is that the optimized
geometry depends very little on the size of the simulation.
The averages obtained with the 50 ps and 150 ps simulation
are almost identical. Furthermore, despite the gradient fluc-
tuations associated with the simulation size, the solute geom
etries are very stable: the standard deviations<a®eD01 A
for the bond lengths and 0.2° for the bond angles. Although
our values are not directly comparable with the results ob-:2
tained by Chalmet and Ruiz-peZ due to small differences
in the basis set and the density functional, they are very ¢ o
similar qualitatively and quantitatively: the solvent induces a 2
decrease in the CN distance, an increase in the CO distance 0.0 -
and negligible variations in the bond angles. These results L
can be interpreted simply by the stabilization of the zwitte-
rionic electronic configuration by the electrostatic solute— FIG. 7. Root mean square change in free-energy surface of water.
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FIG. 8. Polarization free-energy change of a liquid water molecule during FIG. 10. Root mean square change in free-energy surface of methanol.
the optimization procedure.

no appreciable effect on the geometry: the standard devia-

set!” As was the case for formamide, convergence is reachefions are 0.001 A for the bonds and 0.1°-0.4° for the angles.
in about 4—5 cycles of the ASEP/MD procedisee Fig. 7. The number of cycles necessary to reach convergence is
The rms gradient value is also very similar, about 0.0018/€ry similar in the three systems considered, although in
hartree/bohr. The fluctuations in the free-energy, Fig. 8, ar&ach case a different procedure was used to calculate the next
about 0.2 kcal/mol, clearly less than the fluctuations due t&olute geometry in the ASEP/MD cyclealculation of the
thermal effects. The water molecule undergoes a strong pé&tadient, gradient and Hessian, or of the complete optimized
larization during the solution procedure. The induced dipoledeometry. Given that the computational times are very dif-
moment, 0.77 D, compares well with the results obtained byerent depending on the method used, the best option is to
other author€? and with the estimated experimertalalue,  Use the simplest procedure, i.e., to calculate the new geom-
0.70-1.0 D. The geometry changes are displayed in Fig. ®try by using only the gradient.
The OH distance increases by 0.81%002 A. The bond
angle does not change appreciably. V. SUMMARY

Finally, we studied liquid methanol. The basis set was of
aug-cc-pVDZ(Ref. 17 quality. The calculations were per-
formed at the DFT level. Convergence was reached in 3—
cycles, Fig. 103 and the rms gradient was somewhat lower
in this case, 0.0008 hartree/bohr, than for formamide an
water. The free-energy fluctuations, Fig. 11, are howeve
similar to those of water, about 0.3 kcal/mol. Tinesolution

In this article we have proposed a method for the opti-
ization of molecule# solutionthat makes use of the mean
leld approximation and the free-energy gradient method.

he method yields optimized stable geometiiesolutionin
X very efficient way: the increase in computational time is
minimal with respect to previous versions of the ASEP/MD

; ) . hat worked at a fixed geometry. As a new ingredient, we
dipole moment was 2.30 D and the induced dipole momen . . i
0.55 D. The methanol induced dipole moment is clearly eed only calculate the gradient, or the gradient and the Hes

sian, at each cycle of the ASEP/MD procedure. In general

lower than that obtained for water. This is so even thoughS_6 cycles were enough to reach convergence. We have also
water’s polarizability is almost half that of methanol. The '

explanation is to be found in the number of hydrogen bonds

that each system forms. Thus, while methanol can form two 1.0
hydrogen bonds, this number increases to four in the case ¢
water. The changes in the geometry originated by the solven_ 0.0
are also less in methanol than in water. Only the OH bond is@
increased by about 0.008 A. The rest of the molecule, Fig.3 -1.0
12, does not change appreciably. As was the case for th&
water and formamide, the fluctuations in the gradient haveg; -2.0

=

2
Lg -3.0 1
0.981 o
o.gy(_))\ to_ooz/@)\ L 40
103.7 103.7
H H H +0.1 H -5.0 . .
1 2 3 4 5 6 7 8 9 10
a b Cycle

FIG. 9. Optimized geometries of water in the gas ph@sendin solution FIG. 11. Polarization free-energy change of a liquid methanol molecule
(b). during the optimization procedure.
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