
The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Exact semi-classical light–matter interaction
operator applied to two-photon processes
with strong relativistic effects

Cite as: J. Chem. Phys. 153, 024114 (2020); doi: 10.1063/5.0007833
Submitted: 17 March 2020 • Accepted: 22 June 2020 •
Published Online: 9 July 2020

Mickaël G. Delcey,1 Rafael Carvalho Couto,1,a) Lasse Kragh Sørensen,2 Ignacio Fdez. Galván,3
Meiyuan Guo,1 Roland Lindh,3,b) and Marcus Lundberg1,c)

AFFILIATIONS
1Department of Chemistry—Ångström Laboratory, Uppsala University, S-75120 Uppsala, Sweden
2Department of Theoretical Chemistry and Biology, School of Chemistry, Biotechnology and Health, KTH Royal
Institute of Technology, SE-10691 Stockholm, Sweden

3Department of Chemistry—BMC, Organic Chemistry, Uppsala University, SE-75123 Uppsala, Sweden

a)Also at: Department of Theoretical Chemistry and Biology, School of Chemistry, Biotechnology and Health,
KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden.
b)Also at: Uppsala Center for Computational Chemistry (UC3), Uppsala University, P.O. Box 576, SE-751 23 Uppsala, Sweden.
Electronic mail: roland.lindh@kemi.uu.se
c)Author to whom correspondence should be addressed:marcus.lundberg@kemi.uu.se

ABSTRACT
X-ray processes involve interactions with high-energy photons. For these short wavelengths, the perturbing field cannot be treated as constant,
and there is a need to go beyond the electric-dipole approximation. The exact semi-classical light–matter interaction operator offers several
advantages compared to the multipole expansion such as improved stability and ease of implementation. Here, the exact operator is used
to model x-ray scattering in metal K pre-edges. This is a relativistic two-photon process where absorption is dominated by electric-dipole
forbidden transitions. With the restricted active space state-interaction approach, spectra can be calculated even for the multiconfigurational
wavefunctions including second-order perturbation. However, as the operator itself depends on the transition energy, the cost for evaluating
integrals for hundreds of thousands unique transitions becomes a bottleneck. Here, this is solved by calculating the integrals in a molecular-
orbital basis that only runs over the active space, combined with a grouping scheme where the operator is the same for close-lying transitions.
This speeds up the calculations of single-photon processes and is critical for the modeling of two-photon scattering processes. The new scheme
is used to model Kα resonant inelastic x-ray scattering of iron–porphyrin complexes with relevance to studies of heme enzymes, for which the
total computational time is reduced by several orders of magnitude with an effect on transition intensities of 0.1% or less.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0007833., s

I. INTRODUCTION

Simulations of spectroscopic data are a critical tool for vali-
dation of calculations against experimental data. In chemistry, all
spectroscopies depend on the interaction between the system and an
external electromagnetic field. The field in the semi-classical approx-
imation is typically described as a plane wave. However, in practice,
the electric-dipole approximation is commonly used, which means

that the electric field is treated as constant over the length-scale of the
interacting system. This approximation has some important limita-
tions. One example is high-energy photons where the short wave-
length means that the electric field changes rapidly over the space
of the target. This is, in particular, the case for metal K-edge x-ray
absorption spectroscopy (XAS). Excitations from the 1s core orbital
of first-row transition metals require photon energies of thousands
of eV, hard x-rays, with corresponding wavelengths of 1 Å–2 Å.
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A clear higher-order effect is that the 1s → 3d transitions in metal
K pre-edges show significant absorption intensities despite being
electric-dipole forbidden in centrosymmetric environments.1

Electric-dipole forbidden transitions have typically been han-
dled by including higher-order terms in the multipole expansion,
e.g., electric quadrupoles. For transitions with non-zero terms of
lower order, the individual transition moments become origin
dependent, which requires that the expansion is made to the same
order as that in the oscillator strengths.2 Second-order expansions
thus require calculations up to magnetic quadrupoles and electric
octupoles. Origin independence was originally shown for the veloc-
ity gauge,2 but should also be valid in the length gauge.3 Still, what
is typically referred to as the length gauge is actually a mixed gauge,
with the electric and magnetic components in the length and velocity
gauges, respectively, and the mixed gauge does not preserve ori-
gin independence in finite basis sets.3,4 Furthermore, the multipole
expansion itself does not necessarily have a smooth convergence
behavior toward the exact result.5 Incorrectly evaluated higher-order
expansions lead to spurious additional intensities that break the
Thomas–Reiche–Kuhn sum rule.6 A solution to the problems with
the multipole expansion is to instead use the plane-wave form of
the wave vector directly, which gives the exact semi-classical light–
matter interaction.5,7–10 No closed formula for the isotropically ten-
sor averaged oscillator strengths is known, but the exact value can be
approximated by averaging over different directions using a Lebedev
grid.8

One area where the exact operator is of great value is for sim-
ulating the above-mentioned metal K pre-edges.5,9 These spectra
provide information about both geometric and 3d-electronic struc-
tures.1 Hard x-rays are only weakly absorbed by lighter elements,
which reduces background absorption and beam-induced sample
damage. One disadvantage is that the short lifetime of the 1s core
hole leads to significant lifetime broadening (1 eV–2 eV). High-
resolution spectra that are rich in electronic structure information
can be obtained using resonant inelastic x-ray scattering (RIXS).11–14

Here, the incident energy (Ω) is scanned over the 1s → 3d absorp-
tion resonances followed by emission of a scattered photon of lower
energy (ω); see Fig. 1.13,15–21 For systems with low metal concentra-
tion or those that are rapidly damaged in the x-ray beam, it is prefer-
able to monitor the most intense emission channel, Kα (2p → 1s),
which is approximately ten times more intense than the Kβ (3p→ 1s)

FIG. 1. Two-step total energy schematic of the Kα RIXS process. The vertical axis
shows the total energy of the electron configuration.

emission.15 The energy transfer, which is the difference between
incident and emitted photons (Ω − ω), then corresponds to the
energy of a 2p → 3d transition (metal L-edge XAS); see Fig. 1. As
the lifetime of the 2p hole in the final state is longer than that of a 1s
hole, this leads to a high resolution in the energy transfer direction
even when using hard x-rays. High-resolution Kα RIXS data have
been collected for several enzymes, e.g., photosystem II, cytochrome
c, and hemoglobin.18,22,23

In cytochrome c, RIXS was used to study the role of the
axial ligands in electron transfer.22 For hemoglobin, it was used to
probe the extent of the electron transfer between iron and O2.23 In
both cases, this information was extracted from comparisons with
well-defined heme model complexes. Ideally, it should be possi-
ble to directly connect spectra to the electronic structure through
a molecular-orbital (MO) model. This requires a method that han-
dles strong correlation in open 2p and 3d shells, as well as spin–
orbit coupling, which is especially strong for the 2p hole. At the
same time, the spectra represent a relativistic two-photon process
beyond the electric-dipole approximation. This is very challenging
to describe using response theory, especially for highly correlated
wavefunctions.

An electronic structure method that can describe these strongly
correlated systems is the multiconfigurational restricted active-
space (RAS) approach.24,25 In this framework, multi-photon pro-
cesses can be described using the the RAS state-interaction (SI)
approach.26,27 Here, spin–orbit coupling is introduced as a per-
turbation on top of a scalar relativistic wavefunction from a
spin-free second-order Douglas–Kroll–Hess Hamiltonian.28,29 The
spectrum is then generated by combining individual transition
moments between explicitly calculated initial, intermediate, and
final spin–orbit states. This approach has previously been used to
describe Kα RIXS of iron complexes using a second-order expan-
sion.30,31 However, for the reasons outlined above, the exact oper-
ator has many advantages in terms of stability, especially for sys-
tems where large basis sets are prohibitively expensive. A rela-
tivistic four-component implementation of the exact operator has
been published,5 but does not yet handle multi-photon processes.
With restricted active space state-interaction (RASSI), the problem
instead becomes the large number of transitions. For RIXS spec-
tra, there can be hundreds or even thousands of spin–orbit states
in each symmetry, which can give millions of individual state-to-
state transitions. This is not a severe limitation in the electric-
dipole approximation.32 However, the form of the exact operator
depends on the transition energy, and new integrals have to be cal-
culated for every transition, which makes large RIXS calculations
unfeasible.

To overcome this bottleneck, two new schemes have been
implemented in OpenMolcas.33 First, storage requirements and I/O
computational overheads are reduced by storing integrals in the
molecular-orbital (MO) basis running over active orbitals only, in
contrast to the full atomic-orbital (AO) basis. Second, a modified
plane-wave operator has been introduced that looks the same for
groups of close-lying transitions. Combined, these two advances lead
to computational savings of several orders of magnitude. The new
implementation is used to model Kα RIXS of two iron–porphyrin
complexes, ferrous (FeII) and ferric (FeIII) Fe(P)(ImH)2 (P = por-
phine, ImH = imidazole), of relevance for heme enzymes such as
cytochrome c and hemoglobin.22,23 X-ray spectroscopy gives unique
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insights into the iron electronic structure in heme systems because
the π → π∗ transitions in the porphyrin ligand obscure UV/Vis
probes of the metal.34 L-edge XAS spectra of heme systems have
been simulated with RAS,35,36 but their RIXS spectra have previ-
ously only been modeled using the semi-empirical charge-transfer
multiplet model.22,23,37

II. THEORY
This section gives a short background to the current implemen-

tation of the exact operator in OpenMolcas.33 This is followed by
a description of the main improvements in the new implementa-
tion that allows for calculations of a very large number of individual
transitions.

A. Integral evaluations for the exact operator
Assuming that the electromagnetic field is weak, the exter-

nal field can be treated as a perturbation of the molecular sys-
tem. Starting from a monochromatic linearly polarized electromag-
netic wave, the time-independent perturbation, when neglecting the
spin-magnetic term, can be written as

Û = eA0

2me
∑
i

exp(ik ⋅ ri)(E ⋅ p̂i). (1)

Here, k is the wave vector, E is the polarization direction,
orthogonal to the direction of propagation k, and lastly, pi and ri
designate the momentum and position of the electrons, respectively.
The two constants in the front, e and me, are the charge and mass of
the electron, respectively, and A0 is the amplitude of the field.

The transition rates between state 0 and n depend on the transi-
tion moment T0n = ⟨0 ∣ T̂ ∣ n⟩ with the transition operator T̂ defined
as T̂ = 2

A0
Û. Thus, moving to atomic units, the key ingredient in

evaluating the exact operator in a Gaussian basis is the evaluation of
integrals of the following type:

Iμνλ = ⟨χμ∣ exp(±ik ⋅ r)p̂λ∣χν⟩, (2)

where χ is a Gaussian basis function and p̂λ is the momentum along
a specific direction λ. The evaluation of the exact operator in the
velocity representation in Eq. (2) can be performed in many differ-
ent ways. The, perhaps, most intuitive way is as a Fourier transfor-
mation of a Gaussian where analytical recursive formulas are well
known.38 Alternatively, the exp(±ik ⋅ r) term can be evaluated as a
sum of sine and cosine functions.7,8 As the evaluation of the ana-
lytical expression involves a new Gaussian, these integrals can be
evaluated using a standard Gauss–Hermite quadrature. OpenMolcas
includes an elegant and efficient procedure to evaluate the integrals
in this formalism.9,10,33 As usual, these integrals are then multiplied
by the transition density matrix Γ between the states a and b to form
the expectation value of the transition operator,

⟨a∣T̂∣b⟩λ = Iμνλ Γabμν, (3)

and the squared norm of the moment is used to calculate the oscil-
lator strength. In the end, the isotropic oscillator strengths fab are
obtained after the tensor averaging over a Lebedev grid.8

B. Exact operator for a large number of transitions
Irrespective of the way Eq. (2) is evaluated, every explicit state-

to-state transition requires a new set of integrals due to the assump-
tion of resonant excitations, which causes the wave vector k to be
dependent on the excitation energy. This direct dependence of the
excitation energy is the bottleneck for the exact operator and the only
disadvantage compared to the regular multipole expansion. We will,
therefore, seek approximations which remove this bottleneck.

First, we created a new implementation where the one-particle
transition densities are computed once and stored on a disk in
a compact MO format; for a wavefunction of active space SCF
type, only explicit elements over the active orbitals are required.
The one-particle transition densities are then retrieved from the
disk and transformed to the AO basis as needed. This is opposed
to the previous implementation that stored the one-particle tran-
sition densities over the full AO basis. This leads to a signif-
icant reduction in disk space storage, from n2 to n2

a storage,
which typically for the calculations presented here translates to a
reduction in storage requirements of up to four orders of mag-
nitude. Additionally, reducing the amount of information that
is retrieved from permanent storage also leads to reductions in
the I/O overhead and, thus, adds to the overall speed-up of the
calculation.

Second, in order to further improve the efficiency, the number
of sets of integrals needed in a calculation must be reduced. This can
be accomplished by using the same integrals for energetically close
transitions. For response methods, such as the complex polarization
propagator (CPP) approach, where the excited state is not explic-
itly calculated, the number of different wave vectors will depend on
the number of points needed to construct the spectrum.39 Here, a
related approach is applied where all transitions to final states within
a certain energy range use the same wave vector k. The numerical
justification for this grouping of transitions is found by comparing
how individual integrals over a set of basis functions in Eq. (2) vary
with k.

It can be shown that from grouping the transitions, the lowest-
order change in an integral will be a first-order change in the
transition moment,10

ΔIτλ = ⟨χμ∣iΔkττpλ∣χν⟩, (4)

where ΔIτλ is the change in the integral along the λ, τ-directions and
Δk = ka − kb is the difference in k for two resonant transitions a and
b. This can also be used to estimate the number of points needed to
construct the spectrum for the CPP approach. Note that k and Δk
share the same direction and only differ in their norm.

For the isotropically averaged oscillator strengths, the grouping
of transitions will, therefore, only introduce a small change in the
second-order terms in the oscillator strength f (2)ab since the change
in the transition moment is in first order. For dipole allowed tran-
sitions, where f (0)ab dominates, some variation with k in the integrals
for the higher-order terms of the oscillator strength f (n≥2)

ab will not
matter because the higher-order terms in the multipole expansion
are typically several orders of magnitude smaller than the electric-
dipole oscillator strength f (0)ab . We can, thus, allowΔk to be very large
without a significant loss of accuracy.

J. Chem. Phys. 153, 024114 (2020); doi: 10.1063/5.0007833 153, 024114-3

© Author(s) 2020

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

On the other hand, for very weak or dipole forbidden transi-
tions, such as the 1s→ 3d transitions, the approximation will intro-
duce a change in the integrals for the leading terms in the multipole
expansion f (n≥2)

ab . However, from Eq. (4), it is seen that the relative
error in the integral (ΔII ) then becomes approximately linear in ∥Δk∥

∥k∥ .
The oscillator strengths are proportional to the square of the inte-
grals, and thus, their error will also be to first order linear in ∥Δk∥

∥k∥ .
Thus, if k is large, which is the case in the x-ray spectroscopy of
transition metal complexes, the transition intensities will in all cases
vary very little for energetically close-lying transitions (Δk small, rel-
ative to k). Overall, the quality and speed-up from using the same
integrals for multiple transitions will depend on the sizes of k, Δk,
and the electric-dipole transition intensity. In the above arguments,
we have assumed that the multipole expansion is well behaved in
order to get an ordered estimate of the different terms in the multi-
pole expansion. The conclusion reached is, however, independent of
the behavior of the multipole expansion since multipole expansion
is never performed.

In order to be as easy to use as possible, we chose the default
value assuming the worst-case scenario, meaning dipole forbidden
transitions. In this case, the relative error in the intensity is related
to the size of Δk and k. We, thus, chose a default grouping threshold
of 0.1%, meaning that within each group, the ratio ∥Δk∥

∥k∥ is lower than
10−3. The algorithm then automatically forms the smallest number
of groups possible while respecting this constraint. Unless otherwise
stated, this value was chosen throughout this work. The integrals for
the group correspond to the center of the group interval.

In addition to the modifications of the exact operator, we have
implemented a stricter orthonormalization scheme for CASPT2-
type wavefunctions in RASSI. The default RASSI implementa-
tion assumes that the Hamiltonian and overlap matrices between
CASPT2 states are diagonal. However, using the core–valence sep-
aration means that we calculate ground and core-hole states sepa-
rately, even when they are in the same irreducible representation
and spin multiplicity.40 This can lead to some non-orthogonality
between ground and core-hole states, even if core orbital rotation
is restricted during the restricted active space self-consistent field
(RASSCF) optimization. For the electric-dipole operator, the parity
selection rules ensure that there are no direct contributions from this
overlap. The exact operator also shows no observable effects on the
intensities. However, for the second-order expansion, the residual
overlap can create spurious intensities with the second-order expan-
sion. More specifically, the electric-quadrupole–electric-quadrupole
contribution contains a term that is the product of the electric-
quadrupole moments of initial and final states, and the overlap
between the two states.

To correct this, an optional procedure is added to RASSI
to ensure prior orthonormalization of states, even for CASPT2-
type wavefunctions. First, the overlap matrix S is explicitly calcu-
lated. Second, using the overlap matrix, approximate off-diagonal
elements are added to the Hamiltonian,

Hab = 0.5(Haa + Hbb)Sab, (5)

with Hab the Hamiltonian matrix element between states a and b
and Sab the corresponding overlap element. These terms prevent

the final orthonormalization from leading to large shifts in the final
energies. Finally, overlap and Hamiltonian matrices are diagonal-
ized to get a new set of orthogonal states that can be used in the
intensity calculations. This transformation completely removes the
spurious second-order intensities, and the use of approximate off-
diagonal elements introduces only a minor shift in energy. The shift
depends on the energy difference between the states, but since the
overlaps were small, even for the 7000 eV range in the K pre-edge
calculations, the shifts were all below the meV range. Unless oth-
erwise stated, the modified RASSI procedure has only been applied
to the second-order calculations as they are the only ones showing
spurious intensity contributions.

III. COMPUTATIONAL DETAILS
All RAS calculations are performed using OpenMolcas.33 The

design of the two heme models follows descriptions in Ref. 36. Both
complexes belong to the C2h point group. The strong ligand fields
of the porphyrin and imidazole ligands lead to low-spin states. The
ferrous d6 complex has a singlet (S = 0) ground state, and the ferric
d5 complex has a doublet (S = 0.5) ground state.

The valence active space (RAS2) includes the five metal 3d-
dominated orbitals; see Fig. 2. For simplicity, these orbitals will be
labeled t2g and eg using the well-known Oh point group nomencla-
ture. To these metal-centered orbitals, two filled ligand-dominated
σ bonding orbitals are included as they correlate strongly with the
empty anti-bonding eg orbitals. The next step is to include three
empty orbitals that can correlate with the filled t2g orbitals. These
are, unless specifically commented, metal 4d orbitals that describe
the double-shell effect; see Fig. SI 1.41 To describe the Kα RIXS pro-
cess, the iron 1s orbital is placed in RAS3 and the iron 2p orbitals are
included in RAS1.

Orbital optimizations were performed using state-average (SA)
RASSCF, performed separately for each spin multiplicity and irre-
ducible representation. To select relevant spin multiplicities, the
selection rules for the spin–orbit operator (ΔS = 0, ±1) were
considered. For FeII(P)(ImH)2, which has a singlet ground state,
singlet and triplet intermediate and final states were included.
ForFeIII(P)(ImH)2

+, which has a doublet ground state, doublet and
quartet states were included. Core-hole states are generated using
a projection operator that selectively removes configurations with
fully occupied core orbitals.40 To avoid orbital rotation, i.e., the hole
appears in a higher-lying orbital, the 1s and 2p core orbitals have
been frozen in intermediate and final states.

Due to the wide energy range of the states, coupled with a high
density-of-states, a large number of final states are required. The cal-
culations take advantage of a new efficient configuration interaction
algorithm to converge the state-average RASSCF calculations.40 A
detailed description of the number of states for each spin multiplicity
and irreducible representation is given in the supplementary mate-
rial (Table SI 1). Unless otherwise specified, the ANO-RCC-VDZP
basis set42,43 has been used in the resolution of identity approxi-
mation with an atomic-compact Cholesky decomposition-derived
auxiliary basis.44,45 Final energies were obtained with multi-state
RASPT2 including all states from the SA-RASSCF calculations.46

For the PT2 calculations, the default ionization-potential electron-
affinity (IPEA) shift together with an imaginary shift of 0.3 hartree
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FIG. 2. Fe(P)(ImH)2 (P = porphine, ImH
= imidazole) model complex including
active orbitals. The electron configura-
tion with black arrows is for the ferric
system. Contour drawings of the active
orbitals are shown in Fig. SI 1.

has been used.47,48 Simulated spectra are in some cases sensitive to
the value of the IPEA shift,49,50 but the L-edge XAS spectra of these
heme complexes show only minor changes when varying the value
of the IPEA shift.36

Scalar relativistic effects have been included by using a second-
order Douglas–Kroll–Hess Hamiltonian,28,29 and spin–orbit cou-
pling is included by the RASSI approach.26,27 RASSI has also been
used to calculate transition moments, which have been combined to
form the RIXS spectrum using the Kramers–Heisenberg formula,

F(Ω,ω) =∑
f
∣∑

i

⟨f ∣T̂e∣i⟩⟨i∣T̂a∣g⟩
K(Γi) ∣

2

× K(Γf ), (6)

where the scattering intensity F is a function of incident energy
(Ω) and emitted x-ray energy (ω), and |g⟩, |i⟩, and | f ⟩ are ground,
intermediate, and final states, respectively. K(Γ) depends on the res-
onance energy and the lifetime broadening Γ of each state. T̂a and
T̂e are transition operators for the absorption and emission pro-
cesses, respectively. For T̂a and T̂e, we use the perturbation operator
from Eq. (1) along with Fermi’s golden rule. The current RIXS cal-
culations use the oscillator strengths of absorption and emission
processes, which means that interference effects are neglected. This
corresponds to using this simplified formula,

F(Ω,ω) =∑
f
∑
i
∣⟨f ∣T̂e∣i⟩∣2∣⟨i∣T̂a∣g⟩∣2∣ 1

K(Γi) ∣
2

× K(Γf ). (7)

Using this approximation allowed us to keep the code very
general, instead of making it specific to RIXS processes, and is not
expected to give any major error. However, in RASSI, the transition
moments are, regardless, computed before the angular integration
to form oscillator strengths, and thus, there is nothing formally pre-
venting us to use them directly in the original Kramers–Heisenberg
formula, restoring the full interference and the potential anisotropy.
A Boltzmann averaging of the contributions from different initial

states was made. For FeIII(P)(ImH)2
+, where six initial spin–orbit

states contribute, the summation runs over up to 240 intermediate
and 1440 final spin–orbit states. This gives more than 0.35 × 106

unique transitions and 4 × 106 unique pathways.
The electric-dipole operator is evaluated in both length and

velocity representations. The second-order results are calculated in
a mixed gauge, where the electric multipole terms are in the length
representation, while the magnetic multipole terms are in the veloc-
ity representation.3 This does not preserve origin independence, but
for these calculations, there exists a natural choice of gauge ori-
gin at the iron atom, which is the center of the symmetry. Exact
operator and group approximation are calculated in the velocity
representation.9

Calculated spectra were broadened using a Lorentzian lifetime
broadening of 1.25 eV full width at half maximum (FWHM) and a
Gaussian experimental broadening of 0.2 eV in the incident energy
direction.51,52 This applies to both K pre-edge and RIXS spectra. L-
edge XAS and energy transfer axes are broadened with 0.4 eV and
0.8 eV Lorentzians for the Kα1 (L3) and the Kα2 (L2) regions, respec-
tively. The experimental broadening is set to 0.4 eV. Experimental
RIXS spectra are taken from Ref. 22. Energies of the calculated spec-
tra have been aligned with the first pre-edge peak, and intensities
have been scaled to unity for the maximum of the pre-edge region.
Energy shifts for all simulations are given in Table SI 2.

IV. RESULTS AND DISCUSSION
All x-ray processes in Fig. 1 will be modeled using both the mul-

tipole expansion and the exact operator. The first case is the metal
L-edge XAS, which consists of electric-dipole allowed 2p→ 3d tran-
sitions. The second case is the metal K pre-edge, with electric-dipole
forbidden 1s→ 3d transitions. Finally, the K pre-edge transitions are
combined with electric-dipole allowed 2p→ 1s emission to give the
Kα RIXS spectra.
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A. Iron L-edge XAS spectra
The simulated iron L-edge XAS spectra of the two heme com-

plexes are shown in Fig. 3. The results for the electric-dipole approx-
imation have been published previously.36 The spectra have two sep-
arate edges, L3 and L2, split by the strong 2p spin–orbit coupling in
the final state. The lower-energy L3 edge of the ferrous heme spec-
trum is dominated by a main peak associated with transitions to the
empty eg orbitals. Still, this spectral feature includes contributions
from a large number of final states; see Fig. 3. Comparing the spec-
tra from the different transition moment operators shows that the
spectral shapes are well preserved in all cases; see Fig. 3. Only the
electric dipole in the length representation gives a visually different
spectrum, which is not surprising considering our reference is the
exact operator evaluated in the velocity representation. The devia-
tions are still smaller than the difference between the experiment and
simulations.36

The corresponding comparison for ferric heme gives similar
results. This spectrum consists of a first sharp t2g resonance, fol-
lowed by a broader eg resonance; see Fig. 3. The eg resonance
consists of a very large number of transitions to final spin–orbit
states that are not even separated when plotted as individual sticks.
With thousands of transitions, calculations with the exact operator
are very costly, and electric-dipole calculations are instead com-
pared to the group approximation. Again, the length representation
gives a visually different spectrum, while the velocity representa-
tion overlaps almost perfectly with the grouped version of the exact
operator.

The differences between approximations and the exact opera-
tor are shown in Fig. 4. To enable a visual comparison, the small
deviations for the velocity representation and the group approxima-
tion are scaled up. The length representation consistently overesti-
mates the intensity for both complexes. The deviations, relative to
the intensity at the same point, also increase with increasing energy.

FIG. 3. L-edge XAS spectra of FeII(P)(ImH)2 and FeIII(P)(ImH)2
+ models from

RAS modeling using the exact operator, the group approximation, and the electric-
dipole approximation in length and velocity representations. Sticks represent
individual transitions, and due to the large number of contributions, there is a
considerable overlap also in this representation.

FIG. 4. Deviations between different operators for calculations of L-edge XAS
spectra of heme models. For FeII(P)(ImH)2, comparisons are made against
the exact operator. For FeIII(P)(ImH)2

+, comparisons are made against
the group approximation. Note the difference in scaling factors between the
comparisons.

For the ferrous complex, the largest deviation, compared to the max-
imum intensity of the L2 edge, reaches 4%. The errors are larger
for the ferric complex, up to 16%. More detailed comparisons of
individual transitions are shown in Table I. The deviations for the
velocity representation are typically more than two orders of mag-
nitude smaller, which again can be explained by the reference being
also calculated in the velocity representation. It underestimates the
intensity, with one exception, the t2g resonance in the ferric com-
plex. Finally, the group approximation shows virtually no deviations
(<10−5). This approximation is, thus, very accurate in the 700-eV
transition region and clearly better even than the well-behaving
velocity representation. As outlined in Sec. II, this is expected for
electric-dipole allowed transitions.

B. K pre-edge XAS spectra
For the current centrosymmetric heme complexes, the K pre-

edge XAS spectra consist of electric-dipole forbidden 1s → 3d tran-
sitions. These spectra have been calculated using the exact operator,
the group approximation, and a second-order multipole expansion.
Starting with the ferrous complex, the spectrum has a dominant pre-
edge peak at 7112.2 eV; see Fig. 5. This pre-edge resonance comes
from 1s → eg transitions, and their splitting is small enough so that
they appear as a single peak. The group approximation does not lead
to any visible changes compared to the exact operator. The second-
order expansion gives the same spectral shape but a slight increase
in the intensity.

The pre-edge spectrum for the ferric complex has a significant
additional structure. First, there is an additional transition to the
partially open t2g shell at 7111.2 eV. Second, the eg peak with a max-
imum at 7112.9 eV consists of multiple resonances that come from
open-shell coupling between the t2g hole and the eg electron; see
Fig. 5.1,30 This leads to a broader resonance with a significant struc-
ture, although individual transitions are obscured by the large life-
time broadening. Again, the group approximation gives essentially
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TABLE I. Relative errors in intensity for multipole and group approximations compared to the exact operator. Multipole corresponds to electric-dipole transitions for metal L edges
and a second-order expansion for metal K pre-edges.

Multipole (length) Multipole (velocity) Grouping scheme

Edge System RMSD Max error RMSD Max error RMSD Max error

L-edge FeII(P)(ImH)2 6.22× 10–2 1.28× 10–1 2.46× 10–3 2.02× 10–2 1.28× 10–6 5.87× 10–6

FeIII(P)(ImH)2
+ 1.87× 10–1 1.90× 100 3.44× 10–3 7.15× 10–2 . . . . . .

K-edge FeII(P)(ImH)2 7.27× 10–2 1.29× 10–1 . . . . . . 4.71× 10–4 8.13× 10–4

FeIII(P)(ImH)2
+ 8.51× 10–2 1.24× 10–1 . . . . . . 4.68× 10–4 8.02× 10–4

the same spectral shape, while the second-order expansion gives a
slight increase in the intensity.

To analyze the effects of the approximations to the transi-
tion operator, the differences compared to the exact operator are
shown in Fig. 6 and Table I. For both systems, the deviations for
the grouping scheme are below 0.1%. As explained in Sec. II, the
difference between the two edges arises because for electric-dipole
forbidden transitions, the group approximation introduces a change
in the integrals already at the leading term. This explains the larger
deviations compared to what was reported for the L-edge XAS
spectra.

Interestingly, in both ferric and ferrous, the net effect of the
grouping is a minor overestimation of the intensity. As mentioned
in Sec. II, the approximation evaluates the operator for the energy at
the center of the group interval and will, therefore, underestimate the
intensity of about half of the transitions. Taking the ferric complex
as an example, the average energy of the first group is at 7113.8 eV.
The intensities of all transitions below this value are overestimated,

FIG. 5. Iron K pre-edge XAS spectra of FeII(P)(ImH)2 and FeIII(P)(ImH)2
+ from

RAS modeling using the exact operator, the group approximation, and the second-
order multipole expansion. Spectra are calculated with the ANO-RCC-VDZP basis
set using 40 and 80 final spin–orbit states for ferrous and ferric complexes,
respectively. Sticks represent individual transitions.

while the transitions above are underestimated; see Fig. SI 2. The rel-
ative error is linearly proportional to the distance from the center. As
the most intense transitions appear below 7113.8 eV, see Fig. 5, this
leads to an overestimation of the total spectral intensity.

For both complexes, the second-order multipole expansion
overestimates the intensity compared to the exact operator with
deviations of around 7%–8%. This is similar to what was observed
for the L-edge XAS spectra in the length gauge. It is possible
that also this deviation is due to gauge differences, as the mixed-
gauge second-order expansion in this case is dominated by the
quadrupole–quadrupole term, which is in the length gauge. These
results are obtained after correcting for artificial contributions from
the residual non-orthogonality of initial and final states. With-
out these corrections, the second-order expansion shows additional
high-energy transitions that in some cases are significantly more
intense than the properly described transitions; see Fig. SI 3. These
contributions do not appear when using the exact operator; see
Fig. SI 4. The grouping scheme, thus, gives two orders of magni-
tude lower deviations than the second-order expansion with the
additional benefit of decreased sensitivity to non-orthogonality.

FIG. 6. Deviations between different operators for calculations of K pre-edge
XAS spectra of heme models shown in Fig. 5. Note the different scales of the
comparisons.
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Increasing the size of the basis set from ANO-RCC-VDZP to
ANO-RCC-VTZP leads to relatively minor changes in the simulated
spectra; see Fig. SI 5. This is positive as it indicates that the pre-edge
simulation is fairly well converged with a smaller basis set. Com-
pared to the basis-set effect, the spectra are more sensitive to the
number of final states. Increasing the number from 40 to 120 (20
and 60 per irreducible representation) has different effects on the
two systems. For ferrous heme, it leads to the appearance of a high-
energy π∗ resonance that also appears in the experimental spectrum;
see Fig. SI 6. For ferric heme, increasing the number of states results
in a change in the active space which deteriorates the description of
the eg orbitals; see Fig. SI 1. The reference RIXS calculations will,
therefore, be calculated using a different number of 1s core-hole
states, 120 and 40 for ferrous and ferric heme, respectively.

C. RIXS
Experimental and modeled Kα RIXS spectra of ferrous and fer-

ric heme are shown in Fig. 7. The two axes are the incident energy
(Ω) and the energy transfer (Ω − ω). Each plane has two separate
regions along the energy transfer axis. The region at lower energy is
the Kα1 emission, and these final states correspond to the L3 edge of
the L-edge XAS. The upper region is the Kα2 emission, which cor-
responds to the L2 edge. Note that the theoretical spectra have been
calculated using the group approximation, as calculations with the
exact operator could not be completed. The electric-dipole allowed
transitions in the rising edge have been subtracted from the experi-
mental spectra.22 As the modeling does not include the rising edge,
experiment and theory are directly comparable.

The experimental spectrum for ferrous heme has a pre-edge
feature at 7112.2 eV; see Fig. 7(a). This is the previously discussed
1s → 3d(eg) resonance. In addition to that main resonance, a high-
energy absorption resonance is also visible in the experimental
spectrum. In the energy transfer direction, the L3 maximum is at
708.2 eV. The energy transfer is relatively broad, which indicates
several emission resonances, some of which can be resolved. The
simulated spectrum matches the experiment with a single domi-
nant resonance that shows a clear structure along the energy-transfer
axis; see Fig. 7(b). The energy splitting between the Kα1 and Kα2
regions is underestimated by 1 eV–2 eV, as seen in previous Kα RIXS
simulations.31 This can be explained by an underestimation of the
2p spin–orbit coupling in the present scheme.53,54 A more detailed
analysis of the energy transfer direction will be given below.

The ferric spectrum has two pre-edge features, associated with
t2g and eg resonances as discussed above. The first feature, located at
an incident energy of 7111.2 eV, is very sharp in the energy transfer
direction, while the second one, with a maximum at 7112.9 eV, is
much broader in both the incident energy and energy transfer direc-
tions; see Fig. 7(c). Both these features are also different in shape
compared to the ferrous heme resonance. The calculations repro-
duce the experimental spectrum although the intensity of the eg res-
onance is underestimated relative to the sharp t2g peak. In addition,
the shape of the eg resonance is not completely reproduced, with
some intensity lacking in the region closest to the t2g peak. These
deviations are similar to those seen in previous RAS simulations of
iron hexacyanides.31

The full advantage of the high resolution in the RIXS exper-
iment appears in the energy transfer direction. For ferrous heme,

FIG. 7. Kα RIXS spectra of [(a) and b)] FeII(P)(ImH)2 and [(c) and (d)] FeIII(P)(ImH)2
+ from the experiment and RAS modeling using the grouping approximation.

Experimental data from Ref. 22. The red vertical lines indicate the constant incident energy (CIE) cuts through the intensity maxima of the first resonances.
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FIG. 8. L-edge RIXS cut vs CIE cut of RIXS spectra of ferrous and ferric heme.
The positions of the CIE cuts are shown in Fig. 7.

an L-edge-like spectrum is obtained by taking a constant incident
energy (CIE) cut through the maximum of the eg resonance. The
2p → 1s emission from the 1Eg intermediate states leads to 2p53d7

final states, nominally the same as those in L-edge XAS. The L3 edge
of the simulated L-edge XAS spectrum has one main feature and
a smaller high-energy feature. The CIE cut at 7112.2 eV incident
energy gives a much wider eg peaks, both in L3 and L2 edges; see
Fig. 8. The same trend can also be observed in the experimental
spectra.22 As explained previously, the increased width can be
explained by the difference in selection rules between the two exper-
iments.17 Using the nomenclature from Oh symmetry, the 2p5t6

2ge
1
g

electron configuration has final states of both T1u and T2u sym-
metries. The L-edge XAS process only reaches T1u states from the
A1g ground state, while the two-photon RIXS process reaches both
T1u and T2u final states. Similar selection rules hold also for the
D4h point group.22 The latter states are lower in energy because
of more favorable 2p–3d electron interactions, which give rise to
the apparent spectral broadening. The exact operator preserves
these electric-dipole/quadrupole selection rules in this two-photon
process.

For the ferric complex, the relatively weak t2g peak in the L-
edge XAS L2 edge can be explained by the selection rules for the
spin–orbit coupled states.55 In the Oh point group, a direct excita-
tion from the J3d = 1

2 ground state (Γ+
7 in the Bethe double-group

notation) to the L2 J2p = 1
2 t2g peak (Γ−6 ) is dipole forbidden. This rule

is relaxed in the D4h point group, but the corresponding peak is still
much weaker in the L2 edge. The CIE cut through that resonance
correctly predicts a small increase in the intensity of the L2 edge
in the two-photon process. This illustrates that a non-relativistic
implementation of the exact operator, combined with a perturba-
tive approach to non-scalar relativistic effects, preserves the selection
rules imposed by 3d and 2p spin–orbit couplings.

D. Timing comparisons
Comparisons of computation time between multipole expan-

sion, the exact operator, and the group approximation are shown in
Table II. All calculations, regardless of if they use only the multipole
expansion or the exact operator, start with the computation of the
transition density matrices in the biorthonormal basis in the RASSI
program. This step is by far the most computational intensive when
using the multipole expansion. Therefore, intensities obtained from
the multipole approximation are always included even when com-
puting the exact amplitudes. The computational time required to

TABLE II. Timing comparison (in min) of the different schemes. All calculations were performed on a single Intel Xeon Gold 6130 CPU. The values marked with a ∗ refer to
extrapolations based on the number of finished transitions after 12 days. For XAS calculations, initial and final states are listed. For RIXS calculations, initial, intermediate, and
final states are listed.

Spin-free Exact
Complex Spectrum Basis states SOC states SOC transitions Standard operator Grouped

FeII(P) (ImH)2 L edge ANO-RCC-VDZP 1/480 1/960 960 661 1 130 45
FeIII(P)(ImH)2

+ L edge ANO-RCC-VDZP 3/480 6/1440 8640 683 18 709∗ 130

FeII(P) (ImH)2 K pre-edge ANO-RCC-VDZP 1/40 1/40 40 1 12 1
FeII(P) (ImH)2 K pre-edge ANO-RCC-VTZP 1/40 1/40 40 1 19 2
FeII(P) (ImH)2 K pre-edge ANO-RCC-VDZP 1/120 1/120 120 11 41 1
FeIII(P)(ImH)2

+ K pre-edge ANO-RCC-VDZP 3/40 6/80 480 1 309 1
FeIII(P)(ImH)2

+ K pre-edge ANO-RCC-VTZP 3/40 6/80 480 1 602 2
FeIII(P)(ImH)2

+ K pre-edge ANO-RCC-VDZP 3/120 6/240 1 440 11 1 508 5

FeII(P) (ImH)2 Kα RIXS ANO-RCC-VDZP 1/40/480 1/40/960 38 440 612 245
FeII(P) (ImH)2 Kα RIXS ANO-RCC-VDZP 1/120/480 1/120/960 115 320 795 139 865∗ 718
FeIII(P)(ImH)2

+ Kα RIXS ANO-RCC-VDZP 3/40/480 6/80/1440 115 680 756 481
FeIII(P)(ImH)2

+ Kα RIXS ANO-RCC-VDZP 3/120/480 6/240/1440 347 040 813 1240
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perform this step is shown in the table and called “Standard,” while
only the additional time for the exact operator is presented in the
other columns.

For all calculations, the group approximation leads to signifi-
cant reductions in computational time for the evaluation of the exact
operator, often by two orders of magnitude or more. This is not crit-
ical for calculations up to around one thousand transitions, because
then even the exact operator does not take much computational
time, at least compared to the underlying electronic structure cal-
culations. However, for some L-edge XAS calculations and all RIXS
calculations, with tens or even hundreds of thousands of transitions,
the calculations with the exact operator would take weeks or months
on a single processor. The group approximation reduces this time to
less than a day.

The effects of storing the transition densities in the basis of the
active orbitals only instead of the full AO basis—transformation to
the full AO basis is done on the fly as needed—are exemplified for
the L-edge XAS calculation of FeII(P)(ImH)2. It is among the smaller
of the current calculations, but here, the AO basis requires a disk
space of 234 GB. This is reduced by almost three orders of mag-
nitude, down to 622 MB in the active orbital basis. Concurrently,
the wall-clock time time is reduced by 10% due to the smaller I/O
overhead.

For calculations using the group approximation, the group size
is ∼0.7 eV for the L-edge XAS spectra. As transitions span over
∼20 eV, this gives around 30 groups. For the K pre-edge, the group
size is 7.1 eV, which gives a single group for both complexes. In
the emission calculations, the group size is 6.4 eV which gives five
groups. Although the number of RIXS transitions remains the same,
the total number of individual integrals is reduced to no more than
six. The total cost of computing intensities with the exact operator
using the grouping scheme is always on the same order of magni-
tude in timings as the standard RASSI, with multipole expansion
being, at worst, 2.5 times as expensive. It is possible to modify timing
and accuracy by changing this value, but the combination of small
errors and excellent timing suggests that this value is appropriate.
This means that in most cases, exact amplitudes can be computed
without significantly hampering the efficiency.

V. CONCLUSIONS
The exact operator offers a number of advantages compared to

the multipole expansion, including increased stability also for small
basis sets. This has previously been implemented for single-photon
processes. Here, it is extended to two-photon processes with signif-
icant relativistic effects through the state-interaction model, which
makes it possible to also get two-photon processes in the context
of the RASPT2 approach. However, with a very large number of
transitions, the cost of evaluating the exact operator becomes very
large as the operator itself and, thus, all integrals depend on the res-
onance energy. For the modeling of Kα RIXS, which can include
hundreds of thousands of unique transitions in the state-to-state pic-
ture, this leads to a computational bottleneck. The new grouping
scheme, where the form of the exact operator is the same for close-
lying transitions, reduces the computational time by two orders of
magnitude with minimal effects on the transition intensities. This
computational approach is used to model heme complexes with

good agreement between the experiment and theory. This opens up
for ab initio modeling of Kα RIXS for both model complexes and
enzymatic systems.

SUPPLEMENTARY MATERIAL

See the supplementary material for additional details about the
RAS simulations including active orbitals and additional figures with
K pre-edge XAS spectra.
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