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ABSTRACT: Analytical state-average complete-active-space self-consistent field
derivative (nonadiabatic) coupling vectors are implemented. Existing formulations
are modified such that the implementation is compatible with Cholesky-based
density fitting of two-electron integrals, which results in efficient calculations
especially with large basis sets. Using analytical nonadiabatic coupling vectors, the
optimization of conical intersections is implemented within the projected constrained
optimization method. The standard description and characterization of conical
intersections is reviewed and clarified, and a practical and unambiguous system for
their classification and interpretation is put forward. These new tools are
subsequently tested and benchmarked for 19 different conical intersections. The
accuracy of the derivative coupling vectors is validated, and the information that can
be drawn from the proposed characterization is discussed, demonstrating its
usefulness.

1. INTRODUCTION

The theoretical study of nonadiabatic processes, those in which
the nuclear motion involves more than one Born−Oppen-
heimer potential energy surface, has seen intense development
in the last decades. Several reviews on the subject have been
published in recent years,1−6 and the interested reader is
encouraged to peruse them and consult references therein. A
key quantity in nonadiabatic processes is the derivative coupling
vector (also called nonadiabatic coupling vector). It measures
the mixing between the adiabatic (Born−Oppenheimer)
electronic states with the nuclear motions and, together with
the electronic gradient, defines the first-order shape of the
potential energy surfaces close to degeneracy regions.
Molecular structures with two or more degenerate electronic
states are called conical intersections if the degeneracy is lifted
linearly with the nuclear displacements.7−10 The literature on
conical intersections, their significance, optimization, and effects
on nonadiabatic processes11 is profuse, in parallel with the
development of nonadiabatic theoretical chemistry studies.12

In spite of their significance, derivative coupling vectors are
often not available from quantum chemistry software packages,
as their implementation is not trivial even if one is willing to
allow for numerical differentiation. To overcome this limitation,
several algorithms have been proposed that obviate the need for
the full derivative coupling vector. For example, the fewest-
switches surface hopping algorithm for nonadiabatic molecular
dynamics13 requires only the dot product of the derivative
coupling and the velocity vector, which is straightforward to
evaluate from the wave functions at different timesteps. For the
optimization of conical intersections there are also algorithms
that do not rely on a derivative coupling vector.14−16

Nevertheless, analytical formulations have been published for
several electronic structure methods,17−22 and using analytical
derivative couplings is almost always preferable to ad hoc
numerical differentiation or approximate methods.
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Molcas23 is one of the leading software packages when it
comes to multiconfigurational methods, due to the efficiency
and versatility it offers. However, until now Molcas lacked the
ability to compute derivative couplings, analytically or numeri-
cally, which limited its potential for use in state-of-the-art
applications in the field of nonadiabatic processes. In this work,
we address this problem by implementing analytical derivative
coupling vectors for state-average complete-active-space self-
consistent field (SA-CASSCF) wave functions, the cornerstone
of most multiconfigurational calculations with Molcas.
Although analytical formulations for general multiconfigura-
tional self-consistent field (MCSCF) and multireference
configuration interaction (MRCI) derivative coupling vectors
have been published before,17,19 we simplify the expressions for
the specific case of SA-CASSCF and connect them with the
formulation for SA-CASSCF energy gradients already used in
Molcas.24

In the past few years, the performance of Molcas has been
greatly improved with the implementation of a Cholesky
decomposition scheme for two-electron integrals, its reformu-
lation as a particular form of density fitting, and the exploitation
of this in most parts of the code, including analytical
derivatives.25−32 Most of the current development within
Molcas takes advantage of this technique, and not doing so for
derivative couplings would be a step backward. Devising a
general partitioning of the two-particle density matrices, we
ensure that our implementation is compatible with density-
fitted two-electron integrals.
Regarding the description and characterization of conical

intersections, it is our impression that the existing literature has
not always succeeded in connecting the formal and
mathematical aspects of the phenomenon with the more
intuitive and practical consequences. The situation is confusing
because, as is natural, different authors have used different
formulations, notations and perspectives to describe the
intersections. Thus, at the risk of introducing yet another
different interpretation, we present here a systematic character-
ization of conical intersections, providing both a complete and
unambiguous mathematical representation of the intersecting
surfaces and the branching space, and an identification of the
main features likely to determine the system properties. This
characterization is done on the basis of local properties
(gradients and derivative coupling vectors).
Finally, we extend the projected constrained optimization

(PCO) method to locate conical intersections. The PCO
method is a general geometry optimization method that can
take into account arbitrary constraints, geometrical or not. With
the PCO method it is also straightforward to combine
additional constraints with those corresponding to the conical
intersection, allowing further exploration of the intersection
seam.
We have tested these tools by optimizing and characterizing

19 different conical intersection structures on 13 chemical
systems. The accuracy of the methods is validated, and the
most significant features of the intersections are discussed. The
performance gain in using density-fitted two-electron integrals
over conventional ones is briefly reported too.
To summarize, the aim of this work is twofold. On the one

hand, based on an existing implementation of analytical
gradients and including the modifications needed to make it
compatible with density fitting, we report and validate an
implementation of analytical SA-CASSCF derivative coupling
vectors. On the other hand we propose and discuss a

consistent, practical, and to some extent intuitive system for
characterizing and describing conical intersections, which can
be used for analyzing the features of potential energy surfaces.

2. THEORY AND METHODS
This section is split into four subsections. The first is a
summary and partial review of the theory of the evaluation of
SA-CASSCF derivative coupling vectors. The second sub-
section deals with the specifics of the efficient evaluation of
these coupling vectors in association with a density fitting
scheme to represent the two-electron integrals. This is followed
by a subsection discussing the characterization of conical
intersections. The last subsection deals with the optimization of
conical intersections using the projected constrained optimiza-
tion method.

2.1. Analytical SA-CASSCF Derivative Couplings. Over
the last decades, several analytical formulations for computing
energy gradients and derivative couplings have been developed
for different ab initio methods. It is not our aim to give a
complete review on these, but we will simply point out some of
the most significant developments for the purpose of this work,
which is implementing analytical derivative couplings for SA-
MCSCF wave functions (SA-CASSCF in particular) with
density fitting.
Page et al.33 proposed a method to compute gradients for a

general multireference configuration interaction (MRCI) wave
function, which involved solving the so-called coupled
perturbed MCSCF equations, once for each nuclear degree of
freedom. Handy and Schaefer34 showed that, in general, the
coupled perturbed equations do not have to be solved for every
degree of freedom, but the formulas can be reordered so that
the equations can be solved once and the solutions used for all
the gradient components. Another highlight was the realization
by Rice and Amos35 that any gradient expression can be
calculated from inner products of “effective” density matrices
and derivative integrals; these effective density matrices can be
efficiently transformed to atomic orbital (AO) basis, avoiding
the transformation of the derivative integrals to molecular
orbital (MO) basis. Finally, Helgaker and Jørgensen36 devised a
general formulation to obtain derivatives of nonvariational wave
functions, by defining a variational Lagrangian function, so that
the coupled perturbed equations need not be explicitly invoked;
this becomes especially useful for higher derivatives.
These advances allowed Shepard37 to write the MRCI

gradient expression in terms of products of AO densities and
integral derivatives, in a formalism that was later extended to
MRCI based on SA-MCSCF orbitals.38,39 For simple SA-
MCSCF wave functions, Stal̊ring et al.24 presented a method
based on a Lagrangian formulation, and this is the method
implemented in Molcas. The equivalence between the last two
results is evident when one compares the equations,
considering that in CASSCF the CI and MCSCF spaces are
the same, so all orbital rotations within the inactive, active or
virtual spaces are redundant, and the quantities labeled with Q
or D in ref 39 vanish. The equivalence with the pre-1985
formulation of Page et al.33 is less obvious, but it can be
followed in the above references (and others therein).
The expressions for derivative couplings between MRCI

wave functions were shown by Lengsfield et al.17 to be very
similar to those of the gradients, with transition density
matrices replacing state density matrices. Using the same
techniques developed for the gradients, Lischka et al.19

expressed the derivative couplings in terms of inner products
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of effective density matrices and AO integral derivatives. Due to
the similarity between the gradient formulation in ref 39 and
that used in Molcas,24 we take the corresponding derivative
coupling formulation19 as a basis for this work.
The derivative coupling vector f AB between two states A and

B represented by the wave functions ΨA(R) and ΨB(R) is
defined as

= Ψ ∂
∂

Ψα
α

R R Rf
R

( ) ( ) ( )AB B A

(1)

where R is the vector of nuclear coordinates and α is one of its
components. The wave functions are expressed as linear
combinations of configuration-state functions (CSFs),

∑ ψΨ =R R RC( ) ( ) ( )I

i
i
I

i
(2)

and the CSFs ψi are linear combinations of Slater determinants
of molecular orbitals, which are linear combinations of atom-
centered basis functions. For simplicity, the dependence on R
will not, in general, be explicitly stated. The vector f AB can be
split in two contributions, termed the configuration interaction
(CI) contribution and the CSF contribution:
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(3)
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where CI is a vector containing the coefficients Ci
I for state I (I

= A, B), EI is the state energy EI = ⟨CI|H|CI⟩, and H is the
Hamiltonian matrix in CSF space Hij = ⟨ψi|Ĥ|ψj⟩. Although the
terms “derivative coupling” and “nonadiabatic coupling” are
used as synonyms for f AB in the literature, in this article we will

emphasize the difference between f AB and hAB by calling the
former “derivative coupling” and the latter “nonadiabatic
coupling” and:

=
Δ

+f
h

f
E

AB
AB

AB
ABCSF

(6)

In an SA-MCSCF calculation, the CI coefficients for each
state, CI, are obtained by diagonalization of H, while the orbital
coefficients that define the CSFs and thus H result from
minimization of the state-averaged energy

∑= ⟨ | | ⟩
∈

C CE w H
I

I
I ISA

SA (7)

with respect to orbital rotations. The factor wI is the weight
assigned to state I in the average. An SA-CASSCF calculation is
a special case of SA-MCSCF where the CSFs are all the
possible excitations within a preselected set of orbitals.
The nonadiabatic coupling can be computed by first solving

the coupled perturbed SA-MCSCF equations, which in the case
of equal-weights SA can be written as

λ

λ
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where G is the usual electronic Hessian matrix, the second
derivative of the SA-MCSCF energy with respect to the wave
function parameters (“orb” orbital rotations; “CI” CI expansion
coefficients); λ are the solutions to the system of equations;
Lorb has components

= −L F F2( )pq pq
AB

qp
AB

( ) (9)
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o
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r s o
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, , (10)

with (pq) as a compound index referring only to the unique
elements of the nonredundant orbital rotation matrix. In
particular, the compound index does not contain rotations
within the active space (both p and q active). The Fock matrix
FAB is computed from the one- (h) and two-electron (g)
integrals, and the symmetric transition density matrices DAB

and dAB.40

The solutions λ are employed in defining auxiliary density
matrices

λΛ = −Λ =pq qp pq
orb orb

( )
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(11)
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where DSA and dSA are the state-averaged density matrices, w is
the weight used in the state average (the same for all states K),
and Êst, eŝtuv are the standard one- and two-electron excitation
operators of second quantization.41

Once these matrices are obtained, the nonadiabatic coupling
can be computed from the effective density matrices

= + +D D D DABeff orb CI (17)

= + +d d d dABeff orb CI (18)

= + −α
α α αh h D g d S F:

1
2

: :AB eff eff eff
(19)

where hα, gα, and Sα are the derivatives of the one- and two-
electron integrals and of the overlap integrals, respectively, Feff

is an effective Fock matrix, computed as in eq 10, but with the
effective density matrices Deff and deff. The notation X:Y
indicates the Frobenius inner product of matrices X and Y,

∑= =
μ ν

μν μνX YX Y X Y: Tr( )T

, (20)

In eq 19 it is assumed that all quantities are expressed in AO
basis.
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These expressions differ from ref 19 only in that quantities
there labeled with D or Q, are set to zero, due to the MCSCF
and CI spaces being the same in SA-CASSCF (no orbital
subspaces need be resolved). Furthermore, these expressions
are identical to those implemented in Molcas for SA-MCSCF
gradients,24 with transition density matrices replacing state
density matrices in the equivalent of eqs 10, 17, and 18, both
for conventional and density-fitted two-electron integrals.32

The CSF f AB component, eq 5, can be computed in AO basis
as

=α
α − −f S D2 :AB ABCSF , ,

(21)

where DAB,− is the antisymmetric component of the one-
electron transition density matrix and Sα,− is the antisymmetric
derivative overlap

χ χ χ χ= ∂
∂

− ∂
∂μν

α
μ

α
ν

α
μ ν

−
⎛
⎝⎜

⎞
⎠⎟S

R R
1
2

,

(22)

with χμ being the atomic basis functions. Here again, this
simplifies the expression in ref 19, which includes an additional
term that can be incorporated by modifying eq 8. However, this
term can be shown to vanish in a CASSCF calculation, since
the orbital subspaces need not be resolved, and, in MO basis,
Dpq

AB,− = 0 if p and q are not both active orbitals.
When studying nonadiabatic processes, e.g. with “surface

hopping” molecular dynamics simulations, the full derivative
coupling (eq 6) is needed. But f AB is undefined at conical
intersection points (ΔEAB = 0), and for locating and
characterizing these, the quantity of interest is hAB, which
together with the difference gradient defines the branching
space (see section 2.3). In addition, CSF f AB, is not translation/
rotation invariant even in the absence of an external potential.17

This lack of invariance can lead to unphysical results in
dynamics studies, and it is due to the absence of electron
momentum in the Born−Oppenheimer approximation.21

Fatehi et al.21 have addressed this problem by including
electron translation factors in the AO level, which results in a
very simple recipe to restore translational invariance: set Sα,− =
0.21,42,43 In the present case, this correction means simply
ignoring CSF f AB. Thus, for most practical applications, only hAB

is required.
2.2. Implementation. The implementation of SA-CASSCF

derivative couplings with density fitting in Molcas follows
closely that of SA-CASSCF gradients,24,32 the only difference
appears in the partitioning of the two-electron density matrices,
and in the computation of CSF f AB. All other details regarding
the use of density-fitted two-electron integrals in ref 32 remain
valid and we will not be concerned with them here.
In eq 19 the effective two-electron density matrix in AO

basis, deff, is needed, but its size increases with the fourth power
of the number of basis functions, so it is not practical to store it
fully. Instead, only the contribution from the active orbitals (in
MO basis) is stored and the full matrix is reconstructed on the
fly employing the following partitioning.
Using the notation

=

= + − +X Y Y X X Y Y X

X Y Y X[ , ] [ , ]
1
2

( )

pqrs pqrs

pq rs pq rs ps qr ps qr (23)

a symmetric MCSCF two-electron density matrix can be
partitioned into its active-only part dA and a part obtainable
from one-electron density matrices:

= + +
⎡
⎣⎢

⎤
⎦⎥d d D D D,

1
2pqrs pqrs

pqrs

A D I A

(24)

where DI and DA are, respectively, the inactive and active
components of the one-electron density matrix (D = DI + DA),
and DD is a matrix with 2 in its inactive diagonal elements and 0
elsewhere (in MO basis). In a state density matrix, DI = DD,
while in a transition density matrix DI = 0 and DA = D. This
partitioning cannot be applied to deff directly, but it can be
applied to the auxiliary density matrices dorb and dCI. The
matrix dCI has the form of a transition density matrix, even
when computing a gradient, since it involves two orthogonal CI
vectors (eq 16):

= + +
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while dorb is a one-index-transformed state (averaged) density
matrix, even when computing nonadiabatic couplings. Using
the notation {X}Λ for the one-index transformations in eqs 12
and 13, such that
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and finally, the effective two-electron density matrix:
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The matrix DD is trivial, and so is −D Deff 1
2

I once Deff is

known (in fact, for nonadiabatic couplings this is just Deff),
DSA,A is obtained directly from the SA-CASSCF calculation, and
Dorb,I is the one-index transformation of DD.
This partitioning, unlike that used in ref 24, is valid for both

state and transition density matrices, with their appropriate
values for DI, and it is in fact similar to the partitioning
proposed in ref 32 for evaluation of the exchange component.
In our current implementation we use exclusively the
partitioning in eq 32 throughout, for gradients and nonadiabatic
couplings, with conventional two-electron integrals or with
density-fitted integrals.
The CSF f AB component, eq 21, does not appear in the

gradients. Its calculation is trivial and does not even require
explicitly building Sα,−. Let us first consider the normal
connection term present in all gradient expressions, as in eq 19:

∑=α

μ ν
μν
α

μνS FS F:
, (33)

The matrix Sα is symmetric, the sum of left and right
derivatives, which are transposes of one another:

χ χ χ χ= ∂
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= +

= +

μν
α

μ
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ν
α

μ ν

μν
α

μν
α

μν
α

νμ
α

S
R R

S S

S S

R L

R R
(34)

The only nonzero elements of Sα, and the only contributions to
eq 33, are for those pairs where either χμ or χν is centered on
the atom affected by α. If both functions are centered on the
same atom, Sμν

Rα = −SνμRα and Sμν
α = 0, and if only χμ (χν) is

centered on the α atom, Sμν
Rα = 0 (Sνμ

Rα = 0). In addition, if χμ is
centered on α and χν is centered on β, Sμν

α = −Sμνβ . Thus, eq 33
can be computed by evaluating, for each α, only the nonzero
Sμν
Rα, and adding the contribution, with opposite sign, to the β
component of the gradient.
The appearance of the antisymmetric Sα,− in the expression

for CSF f AB makes it slightly different, but it still can be
computed in a similar fashion, evaluating each nonzero Sμν

Rα only
once, since

= −μν
α

μν
α

νμ
α−S S S

1
2

( ), R R
(35)

but now Sμν
α,− = Sμν

β,−, with no change of sign, and Sμν
α,− ≠ 0 if both

χμ and χν belong to the α atom. And these are, in practice, the
only differences in the algorithm if Sμν

Rα is used directly as
outlined above.
2.3. Conical Intersection Characterization. At a conical

intersection point, two electronic states A and B are degenerate
(EA = EB) and the degeneracy is lifted linearly by distortions of
the nuclear geometry in two independent directions, which
form the branching space or branching plane. In all the other
directions the degeneracy is maintained to first order, and they
form the intersection space. In the nonrelativistic approximation,
conical intersections occur only between states of the same spin
multiplicity. The following discussion is based on previous
works on conical intersections, especially on refs 10, 12, and 44;
the notation has been standardized and the interpretation has
been expanded and unified.

The energies of the two intersecting states in the vicinity of a
conical intersection can be approximated to first order by
means of the three vectors gA, gB (the gradients of the two
states) and hAB (the nonadiabatic coupling between the two
states), all computed at the intersection point.10,12 Instead of
gA, gB, it is more convenient to use their sum and difference:

= −g g g
1
2

( )AB B A
(36)

= +s g g
1
2

( )AB B A
(37)

so that the branching plane is defined by the vectors gAB and
hAB. These latter vectors are not uniquely defined, because the
two states are degenerate and any linear combination of them
can be chosen, which determines the particular pair of vectors
that will be obtained. The term sAB, on the contrary, is invariant
to the specific choice of the electronic states. Moreover, sAB will
in general not be contained in the branching plane but will have
a component in the intersection space. Attending to this
component, singular intersection points can be identified, such
as minimum-energy conical intersection points (MECIs),
where the energy of the intersecting states is at a local
minimum in the intersection space. At a MECI, sAB is
completely contained in the branching plane. The rest of this
section is valid for arbitrary intersection points.
A rotation of the two intersecting states (their CI vectors) by

an angle β1
2

causes the following transformation in the

corresponding gAB and hAB vectors:

β β̃ = +g g hcos sinAB AB
(38)

β β̃ = −h h gcos sinAB AB
(39)

It is then possible to select the angle β such that the resulting g ̃
and h ̃ vectors are orthogonal, by setting

β =
·

· − ·
g h

g g h h
tan 2

2 AB AB

AB AB AB AB
(40)

There are still four nonequivalent angles that satisfy this
condition, and they correspond to additional π

2
rotations of the

g ̃ and h̃ vectors, i.e., the two vectors can be interchanged with
adequate rotations of the electronic states, and they do not have
a fixed role. To make this clear, we change the notation to x
and y, and we denote the orthogonal and normalized vectors
that define the branching plane as x ̂ and y:̂

̂ =
̃
̃· ̃

̂ =
̃

·̃ ̃
x

g
g g

y
h

h h
;

(41)

The orthogonalization achieved in this way has the desirable
properties of being symmetry-adapted, independent of the
initial choice of the gAB and hAB vectors, and continuous along
an intersection seam.45 It is also noteworthy that the vectors g ̃
and h ̃ are not just arbitrary rotations of gAB and hAB but are the
pair of vectors that would result from an appropriate unitary
rotation of the wave functions at the conical intersection. Since
at an intersection the two wave functions can be arbitrarily
rotated, there is no loss of information in this orthogonaliza-
tion.
Geometries in the branching plane can thus be defined as

= + ̂ + ̂×R R x yx y x y( , ) (42)
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where R× is the structure of the intersection point and x, y are
lengths. The energy difference in the branching plane is then

|Δ | = ̃· ̃ + ·̃ ̃g g h hE x y x y( , ) 2AB 2 2
(43)

or, by defining a strength or pitch (δgh) and asymmetry (Δgh)

δ = ̃· ̃ + ·̃ ̃g g h h
1
2

( )gh (44)

Δ = ̃· ̃ − ·̃ ̃

̃· ̃ + ·̃ ̃
g g h h
g g h hgh

(45)

δ|Δ | = + + Δ −E x y x y x y( , ) 2 ( ) ( )AB
gh gh

2 2 2 2
(46)

In addition, the average energy in the branching plane is
given by

̅ = + · ̂ + · ̂× s x s yE x y E x y( , ) ( ) ( )AB AB AB
(47)

where E× is the energy at the intersection point. Since only the
projection of sAB on the branching plane is required, we can
define a relative tilt (σ) as this projection, conveniently scaled

σ = +s sx y
2 2

(48)

δ δ
= · ̂ =

· ̂s x s y
s s;x

AB

gh
y

AB

gh (49)

with which the average energy is expressed as

δ̅ = + +×E x y E xs ys( , ) ( )AB
gh x y (50)

and the energies of the two states are

δ

= ̅ ± Δ

= + + ± + + Δ −×

E x y E x y

E x y E x y

E xs ys x y x y

( , ), ( , )

( , )
1
2

( , )

( ( ) ( ) )

A B

AB AB

gh x y gh
2 2 2 2

(51)

or, in polar coordinates

θ θ

δ σ θ θ θ

θ θ

= + − ± + Δ

= + = =

×

E r E r

E r

r x y
y
x

s

s

( , ), ( , )

( cos( ) 1 cos 2 )

; tan ; tan

A B

gh s gh

s
y

x

2 2

(52)

where r and θ are the standard polar coordinates in the
branching plane with R× as the origin and θs is the tilt heading,
the direction of the tilt.
In general, there is a symmetry between the energies of the

two states, as it is verified that EA(r, θ) − E× = −(EB(r, θ + π) −
E×). In Figure 1 the meaning of the different parameters is
graphically represented. We note that σ is defined such that, for
a symmetric intersection (Δgh = 0), one of the surfaces is flat
along θ = θs when σ = 1: EA(r, θs) = EB(r, θs + π) = E×. It is
tempting to define a tilt angle (the angle between the red and
green planes in Figure 1), but this angle would depend on the
relative scale of the energy and x, y axes, so it is not well-
defined. Given that σ is a dimensionless quantity, an angle
arctan(σ) could be formally defined, but it does not represent

Figure 1. Electronic surfaces around a conical intersection in the branching plane, with characteristic parameters labeled. The vectors x ̂ and y ̂ define
the branching plane. At a given distance from the intersection r, ΔEx(r) and ΔEy(r) are the energy differences between the two states, on the x and y
directions; the pitch δgh is related to their sum and can be seen simply as a scale factor, the asymmetry Δgh is related to their difference. The average
energy forms a plane (green), tilted with respect to the xy plane (red), its maximum at the distance r, Es(r), is found at an angle θs and defines the
relative tilt σ. The right plot represents the three vectors that describe the intersection in the branching plane.
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any actual angle obtainable from the representation of the
surfaces.
As mentioned above, the x ̂ and y ̂ vectors are only defined up

to transpositions and changes of sign, and therefore, θs can
change in multiples of π

2
and sign, and Δgh can change its sign.

It is always possible to choose x ̂ and y ̂ in such a way that Δgh ≥
0 and θ ∈ π⎡⎣ ⎤⎦0,s 2

, this fixes unambiguously their identity and

sign, except in limit cases. We have used this choice in all the
examples. For a vertical intersection (σ = 0) θs is undefined. In
a symmetric intersection (Δgh = 0) any rotation of the x ̂ and y ̂
vectors is allowed, which makes θs arbitrary, depending on the
particular choice of x ̂ and y.̂
The model described by eq 52 is linear and assumes the gAB

and hAB are independent of r, the distance to R×; in fact, they
can be obtained for any point in the branching plane as

θ
δ

θ

θ θ

=
+ Δ

× ̂ + Δ + ̂ − Δ

g

x y

r( , )
1 cos 2

[ (1 )cos (1 )sin ]

AB gh

gh

gh gh

(53)

θ
δ

θ
θ θ=

− Δ

+ Δ
̂ − ̂h y xr( , )

1

1 cos 2
[ cos sin ]AB gh gh

gh

2

(54)

These vectors are shown in Figure 1 too; note that sAB is
constant and hAB is always tangent to a circle around R×, but gAB

is only perpendicular at θ = πn
2
. Furthermore, by approximating

f AB ≃ hAB/ΔEAB we obtain

θ
θ

θ θ≃
− Δ

+ Δ
̂ − ̂f y xr

r
( , )

1

2 (1 cos 2 )
[ cos sin ]AB gh

gh

2

(55)

The magnitude of f AB depends only on the location in the
branching plane (r and θ) and on Δgh, the other intersection
parameters do not affect the derivative coupling. By choosing
Δgh positive, f AB will always be larger at points close to the y ̂
axis of the branching plane (θ ≃ π π,

2
3
2
), where it has the

direction of the x ̂ vector. Thus, the x ̂ vector provides the
direction along which nonadiabatic effects are expected to be
more significant.
From eq 55 it is also verified that the line integral of f AB

along a closed loop surrounding R× satisfies

∮
∫

∫

θ

θ
θ

π

=

= − Δ
+ Δ

=

π

θ

π

f R

f

d

d

1
2

1
1

1 cos 2
d

AB

AB

gh
gh

0

2

2

0

2

(56)

This property can be used to confirm the existence of a conical
intersection inside a small enough region, since the same
integral vanishes if the loop does not enclose R×.10

The parameters Δgh, σ and θs provide a full characterization
of a conical intersection described by eq 52 (E× and δgh are only
offset and scale parameters), but a connection between them

and the features that may be significant from a chemical point
of view needs be established. If the surfaces described by eq 52
are represented for different values of the parameters, it can be
seen that the intersections can be classified according to two
criteria: (1) whether the intersection point is a minimum of the
higher surface in the branching plane (peaked intersection), or
there are directions θ along which the energy of the higher state
becomes lower than the intersection (sloped intersection), and
(2) whether there is a single preferred relaxation direction on
the lower surface (single-path intersection), or there are two
such directions (bifurcating intersection). This is more clearly
seen when the energy is plotted versus the polar angle θ (for an
arbitrary r), as in Figure 2. The intersection is sloped if the EA,

EB curves cross the E× line. Minima on the EB curve represent
preferred paths for relaxation on the lower surface, initial
relaxation along other directions would be deviated toward one
of these preferred ones; bifurcating intersections show two
minima, single-path intersections only one. The number of
minima on EA is the same as on EB, and they are preferred paths
leading to the intersection point on the higher surface. But, if
the intersection is sloped, one (or the only) of these minima is
below E×, which means that it is actually a relaxation path on
the higher surface.
A similar discussion, but from a different point of view, was

carried out by Atchity et al.44 In that work, they discussed the
number of straight-line paths, which corresponds to the
number of stationary points (maxima, minima or inflection
points with zero slope) in the E vs θ plot, and they also
included an “intermediate” type of intersection, where the EA

and EB curves touch but do not cross the E× line. Thus, their
patterns P2, P4, S2, S4 are equivalent, respectively, to “peaked
single-path”, “peaked bifurcating”, “sloped single-path”, “sloped
bifurcating”, with P3, R1, R2, R3, S3 being intermediate cases
between them.
The conditions for an intersection being peaked or sloped,

single-path or bifurcating can be found in ref 44. In terms of the
parameters Δgh, σ, and θs, they can be stated (assuming Δgh ≥
0) as

Figure 2. Plot of E vs θ for the sample intersection depicted in Figure
1 (Δgh = 0.5, σ = 0.3, θs = 335°). The energy axis is arbitrary. The
dashed lines represent the energy difference and the average energy.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.6b00384
J. Chem. Theory Comput. 2016, 12, 3636−3653

3642

http://dx.doi.org/10.1021/acs.jctc.6b00384


σ θ=
− Δ

− Δ
<
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⎪

⎪

⎧
⎨
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(1 cos 2 )
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gh s
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2
(57)

σ

θ θ
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Δ

× + Δ + − Δ
<

> ‐
⎪

⎪

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎧
⎨
⎩

4

(1 )cos (1 )sin
1 bifurcating

1 single path

gh
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2

2

2 2

3
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(58)

and they are represented in Figure 3. For large enough values of
σ all intersections are sloped and single-path, and in particular
every intersection with σ > √2 is sloped. For σ smaller than
approximately Δgh all intersections are bifurcating. In general,
the type of intersection depends on the specific values of Δgh, σ,
and θs. Sloped and bifurcating intersections are only possible

for Δ >gh
1
3
, when the dividing lines in the two panels would

begin to intersect each other.
Peaked intersections are likely to act as funnels or attractors

in dynamic processes occurring on the higher surface, as they
are local minima, while sloped intersections could be more
easily “missed”, since there are continuously descending paths
that avoid the intersection. Bifurcating intersections could give
rise to different products once the system relaxes on the lower
surface, while single-path intersections can be regarded as
leading to a single product. It must be kept in mind, however,
that this interpretation is based on the simple linear model
described above, and is only applicable to the immediate
vicinity of the intersection point: the topography of the surfaces
farther away from the intersection will determine the final
description. Additionally, dynamic effects would also play a role
in an actual process, and this needs to be taken into account
too.5 This linear model is also limited in the type of
topographies it can describe; it cannot, for example, describe
3-fold (or higher) symmetry in systems like H3 or benzene.

46 In
these cases the intersections will probably be totally symmetric
(Δgh = 0, σ = 0) to first order, and to go beyond this, higher-
order models would be needed.47,48

Nikiforov et al.49 proposed a branching plane projection
method for quantitative comparisons of branching planes
obtained with different methods. They use a measure based on
projecting the branching vectors from one method on the plane
spanned by the branching vectors from another method.
Apparently, the authors use normalized gAB and hAB vectors as
branching vectors, without orthogonalization through eqs
38−40, which in our opinion unnecessarily complicates the
comparisons.
When orthonormal vectors are used to define the branching

planes, the method of these authors reduces to

= | · ′ · ′ − · ′ · ′ |a a b b a b b ar ( )( ) ( )( )IJ (59)

where one plane is defined by the vectors a and b and the other
by a′ and b′, and rIJ is a number that ranges from 0 for
orthogonal planes to 1 for parallel planes. Incidentally, we
believe there is a mistake in eq 8 in that paper, which should
read

= | ′ | | ′ | − ′ ′a b a bp s p p p p( ) ( ( ) ( ) ( ( ) ( )) )J I
2 2 2 1/2

(60)

when this is corrected, the “BP projection” matrices reported in
Table II49 are symmetric (the projection of method A onto
method B is equivalent to that of method B onto method A).
A more general analysis of the relations between subspaces,

of which planes are a particular case, can be done in terms of
their principal (or canonical) angles and vectors. In the specific
case of two planes in N-dimensional space, two principal angles
can be defined, ϕ1 and ϕ2, such that ϕ ϕ≥ ≥ ≥π 0

2 1 2 , and at

most N − 2 of them are nonzero (e.g., in three dimensions ϕ2
is always zero and a single angle ϕ1 can be given between any
two planes).50 Assuming that both planes contain the origin, if
ϕ1 = ϕ2 = 0, the planes are coincident, if ϕ1 > ϕ2 = 0, the planes
intersect along a line, if ϕ1 ≥ ϕ2 > 0, the planes are completely
inclined (they only intersect at the origin), and if ϕ ϕ= = π

1 2 2
,

the planes are completely orthogonal (every vector in one plane
is orthogonal to every vector in the other plane). The rIJ

Figure 3. Representation of the conditions of eqs 57 and 58. The shaded areas correspond, for each value of Δgh, to the values of σ and θs for which
the intersection is peaked (left panel) or bifurcating (right panel). The dashed lines are a visual aid for comparing the two graphs. Note that a
nonlinear scale was used for the σ axis (radius) to allow the representation of infinite values.
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number employed by Nikiforov et al. can equivalently be
obtained from the principal angles:

ϕ ϕ=r cos cosIJ 1 2 (61)

In general, two m-dimensional spaces are related by m principal
angles (at most N−m nonzero), and a single ratio can be
defined as rIJ = ∏ cos ϕi. Furthermore, a single angle between
the spaces can also be defined as Φ = arccos rIJ.

51

The principal angles and the value of rIJ are independent of
the choice of vectors within each plane, but if they are chosen
in some consistent and well-defined way (e.g., x ̂ and y)̂, then it
is also possible to quantify a meaningful relation between the
vectors, such as the in-plane rotation needed to match the
vectors of one plane with the vectors of the other plane, after
the two planes are rotated to be parallel.
2.4. Conical Intersection Optimization. Any molecular

structure where there is a degeneracy between two electronic
states is a conical intersection (or at least an intersection of
some kind10). In order to define and characterize specific
structures, one is usually interested in MECIs, which are energy
minima subject to the degeneracy between two states.
In this work the conical intersections are located and

optimized using the projected constrained optimization (PCO)
method.52,53 This method allows the use of an arbitrary number
of constraints, geometrical or not, as long as they can be
formulated as a function of the molecular structure, c(R) = 0.
The value of such a function at the initial structure need not be
zero, but it is requested to be zero at the optimized structure.
The optimization proceeds by separating the coordinate space
into two subspaces by means of a unitary matrix T: one in
which the constraints are, to first order, not modified, and
another in which the constraints are modified. At each iteration
the matrix T is computed and an optimization step is obtained
in each of the subspaces: in the unconstrained subspace to
minimize the energy and in the constrained space to satisfy the
constraints. For more details please consult ref 53.
In principle, for locating a conical intersection it would be

enough to add an energy difference constraint, ΔE = 0, as it is
done for crossing points between states of different spin or
spatial symmetry. However, as previously noted, in a conical
intersection there are two directions in which the energy
difference changes linearly with the displacement. In practice,
this means that including a single constraint in the optimization
is not enough, once the constraint ΔE = 0 is satisfied, to
guarantee that it will be maintained (to first order); a second
constraint is needed, and this is of course the nonadiabatic
coupling.
To define the constraints in the PCO method, not only the

functions c(R) are needed, but their derivatives ∂c(R)/∂R. For
searching conical intersections the two constraints are defined
as

= −
∂

∂
= −R R R

R
R

g R g Rc E E
c

( ) ( ) ( );
( )

( ) ( )A B A B
1

1

(62)

=
∂

∂
=R

R
R

h Rc
c

( ) 0;
( )

( )AB
2

2
(63)

with EA ≥ EB. Note that the derivative of c2(R) does not match
its definition as a constant; this is simply an artificial device to
ensure that the constraint is always satisfied and that the
geometry is not modified along the direction given by hAB. Also,
to avoid instabilities, the energy minimized in the uncon-

strained space by the PCO method is neither EA nor EB, but
their average, +E E( )B A1

2
.

It is not the aim of this work comparing the performance of
the optimization algorithm with other methods, but we note
that other methods have indeed been proposed. Some of these
make use of the nonadiabatic coupling vector;54−56 others use
penalty functions14,15 or a branching plane update.16 For a
comparison of three of these methods, see ref 57. The method
used in this work has the appeal of needing very little additional
implementation once the general PCO method is available and
of being easy to combine with additional constraints.

3. COMPUTATIONAL DETAILS
The implementation of the nonadiabatic couplings in a
development version of Molcas 823 was tested by optimizing
conical intersections in several molecular systems. As test
systems we chose those used in refs 15, 16, and 57. In all cases
we used SA-CASSCF for energies, gradients and nonadiabatic
couplings, the basis set, except when noted otherwise, was
ANO-RCC with double-ζ-plus-polarization contraction,58 the
atomic compact Cholesky decomposition (acCD)59 was
employed in all calculations to treat two-electron integrals,
with the default threshold in Molcas 8 (10−4 Eh). Active spaces
and numbers of roots in the state average are detailed in Table
1. The active space included the full π or conjugated space,

except for stilbene and the green fluorescent protein (GFP)
chromophore anion, where only the central π bond was
included; for ethylene and methaniminium two σ orbitals
correlating with the π orbitals at the twisted geometry were
added; for ketene and diazomethane two in-plane p orbitals at
the terminal CO or NN atoms were added.
For each of the systems we optimized at least one MECI,

between the S0 and S1 states. In some systems several distinct
structures were optimized, as listed in Table 1. We used the
starting structures reported by Keal et al.57 for the systems
studied by them and, in other cases, manually distorted
geometries. All starting geometries, as well as final geometries
and energies are available in the Supporting Information. The
convergence thresholds for the optimizations were the defaults

Table 1. Systems Studied in This Worka

molecule structure (ne, no) ns

ethylene60,61 (a) (6, 4) 4
ethylene (b) (6, 4) 3
ethylene (c) (2, 2) 2
methaniminium62 (d) (6, 4) 4
methaniminium (e), (f) (2, 2) 2
ketene63 (g) (6, 5) 2
diazomethane64 (h) (6, 5) 2
butadiene65 (i), (j), (k) (4, 4) 2
benzene66 (l) (6, 6) 2
fulvene67 (m) (6, 6) 2
azulene68 (n) (10, 10) 2
s-indacene69 (o) (12, 12) 2
PSB370 (p) (6, 6) 2
Me-PSB571 (q) (10, 10) 2
stilbene72 (r) (2, 2) 3
GFP chromophore73 (s) (2, 2) 2

ane, no, ns: number of electrons, orbitals, and states, respectively, in the
SA-CASSCF procedure. For the structures, see Figure 4.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.6b00384
J. Chem. Theory Comput. 2016, 12, 3636−3653

3644

http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.6b00384/suppl_file/ct6b00384_si_001.pdf
http://dx.doi.org/10.1021/acs.jctc.6b00384


in Molcas 8 (rms displacement and step size of 1.2 × 10−3 a0
and 3.0 × 10−4 Eh a0

−1, respectively; maximum components 1.5
times these values), plus a requirement of |ΔEAB| ≤ 10−5 Eh. No
spatial symmetry was enforced in any case, although no effort
was done to break the planar symmetry in the larger systems
(azulene, s-indacene).
Once the MECI was optimized, it was characterized

according to section 2.3, by computing the orthonormal x ̂
and y ̂ vectors that define the branching plane, as well as the
pitch (δgh), asymmetry (Δgh), and tilt (σ, θs) of the intersection.
This characterization provides a first-order model for the
energies of the two intersecting states in the branching plane,
eq 52. The accuracy of this model was tested by performing a
series of single-point calculations at geometries on a circle in
the branching plane of radius 0.001 Å, around the optimized
MECI. Due to the small energy differences found in many
cases, the default convergence criterion for the CASSCF
calculations was tightened 1 order of magnitude.
When minimum energy paths were computed, we used the

Gonzalez−Schlegel algorithm in mass-weighted coordinates.74

4. RESULTS AND DISCUSSION

The optimized structures of the conical intersections studied in
this work are displayed in Figure 4. The number of
optimization steps necessary to reach convergence, as well as
the final energy difference attained, is given in Table 2.
The intersection parameters computed for the optimized

structures are shown in Table 3, and the intersections are
classified according to the values of and in Table 4. These
results are obtained exclusively from the calculation of gradients
and nonadiabatic coupling at the intersection point, as detailed
in section 2.3. The pitch ranges from 0.01 to 0.14 Eh a0

−1, the

asymmetry from 0.11 to 0.88, and the relative tilt from 0.02 to
5.2, providing a wide enough spectrum of intersection
topographies. As marked in Table 4, we have examples of the
four basic intersection types.
In Table 5 we compare our results with the MRCI results of

ref 49. In that work, the authors compared geometries and
branching planes obtained with four different methods. We

Figure 4. Structures of the optimized intersections studied in this work (Table 1).

Table 2. Number of Optimization Steps Required for
Convergence (Nopt) and Final Energy Difference between
the Two Electronic States (ΔE) for All the Intersections
Studied in This Work

Nopt ΔE (μEh)

(a) 14 0.16
(b) 15 1.35
(c) 25 0.09
(d) 5 0.16
(e) 18 0.15
(f) 41 0.02
(g) 11 0.55
(h) 10 0.32
(i) 16 0.22
(j) 42 0.12
(k) 34 0.20
(l) 9 0.08
(m) 21 0.04
(n) 7 0.42
(o) 6 0.53
(p) 10 1.04
(q) 44 0.87
(r) 23 0.09
(s) 32 0.06
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consider MRCI as a reference and compare geometries (root-
mean-square deviation, rmsd) and branching planes (cos Φ; see
the end of section 2.3) for the structures studied in both works.
Even though some details like basis sets, active spaces and state
averaging are different, the rmsd values are generally very close
or smaller than the smallest of the other methods benchmarked
in ref 49, and the similarity between the branching planes is
better than any of them. At least for these systems, SA-CASSCF
results are a very good approximation to MRCI. Only the

intersection (k) stands out, with both a large rmsd and
relatively low cos Φ (Φ = 48.4°). Starting the optimization at
the geometry of ref 49 resulted in the values reported as (k′),
with a slightly higher energy (−154.894 237 Eh). The question
arises whether the intersections (k) and (k′) are simply two
local minima in the same intersection space or they belong to
distinct spaces. We will address this question in section 4.1.
We will only discuss in some detail the first intersection (a),

and we will focus on the most significant features for the rest.
Figures for all the intersections are available in the Supporting
Information. In Figure 5 we show a three-dimensional
representation of the model surfaces generated from the
parameters in Table 3. To verify their accuracy we compared
the energies predicted from eq 52 with energies obtained from
single-point calculations around the intersection point. The
results are shown in the right panel of Figure 5. The first thing
to note is that there is an almost perfect match between the
model energies and the computed ones. The maximum error,
relative to the energy difference, is given in Table 3 (0.21% in
this case). This indicates that the calculated gradients and
nonadiabatic couplings are accurate and that the first-order
approximation used to define the model is appropriate, at least
for the scale of displacements used (0.001 Å).
The graph shows, in accordance with Table 4, that the

intersection is peaked and single-path. There is only one
relaxation direction available, and that is along −x on the
ground-state surface. From the nature of the x ̂ vector, it is seen
that this corresponds to a planarization of the pyramidalized
CH2 group. Although the intersection is peaked single-path, it
could have been sloped had σ been larger than 1.24 (the
planarization would have been downhill on the excited state
too), or bifurcating had σ been smaller than 0.86 (there would
have been a downhill path along +x, possibly leading to a
fragmentation of the molecule).
For this intersection, we checked that eq 56 is satisfied by

computing the full derivative coupling vector f AB, including
CSF f AB, at the points surrounding the optimized structure.
Since the phase of the electronic states is arbitrary, there are
usually spurious changes of sign in the f AB vectors obtained

Table 3. Intersection Parameters for the Intersections
Studied in This Work (in Atomic Units and Degrees)a

E× δgh Δgh σ θs
max

error (%)

(a) −77.915980 0.0949 0.5320 0.9550 0.0 0.21
(b) −77.916493 0.1026 0.4886 0.5668 17.1 0.27
(c) −77.944998 0.0114 0.5114 3.3742 0.1 2.93
(d) −94.331327 0.0687 0.4973 0.5265 90.0 1.02
(e) −94.284472 0.0131 0.7053 1.2566 0.2 2.09
(f) −94.270077 0.0110 0.4837 5.1882 0.0 1.42
(g) −151.832643 0.0596 0.5279 2.0677 0.0 0.27
(h) −147.981288 0.0536 0.7853 1.6580 0.0 0.68
(i) −154.897265 0.1134 0.4447 0.7940 46.5 0.30
(j) −154.890044 0.0918 0.2014 0.8563 69.9 0.40
(k) −154.905154 0.0849 0.2782 0.7623 67.3 0.44
(l) −230.729120 0.1249 0.3402 0.7133 90.0 0.20
(m) −230.791851 0.1163 0.1129 0.8206 0.6 0.44
(n) −383.598175 0.1326 0.2680 2.1588 90.0 0.76
(o) −459.448785 0.1399 0.8753 0.4553 89.7 0.65
(p) −248.341553 0.0614 0.3328 0.0175 52.1 1.09
(q) −441.366313 0.0636 0.7705 0.3625 0.3 1.94
(r) −537.322580 0.0931 0.4401 0.9439 18.8 0.31
(s) −641.829002 0.0740 0.5441 2.0908 3.5 0.62

aIntersection energy E×, pitch δgh, asymmetry Δgh, relative tilt σ, tilt
heading θs. “Max error” refers to the maximum difference between
calculated and predicted energies (see Figure 5 and similar), relative to
the energy difference.

Table 4. Condition Numbers and and Intersection
Type Calculated According to Equations 57 and 58 for All
the Intersections Studied in This Worka

type figure

(a) 0.60 1.07 peaked single-path 5
(b) 0.25 1.02 peaked single-path
(c) 7.53 2.57 sloped single-path
(d) 0.55 0.52 peaked bifurcating
(e) 0.93 1.12 peaked single-path
(f) 18.14 3.50 sloped single-path
(g) 2.80 1.80 sloped single-path
(h) 1.54 1.26 sloped single-path
(i) 0.80 1.43 peaked single-path
(j) 0.88 2.33 peaked single-path
(k) 0.75 1.76 peaked single-path
(l) 0.77 0.91 peaked bifurcating 7
(m) 0.61 2.56 peaked single-path
(n) 6.37 2.22 sloped single-path 9
(o) 1.66 0.22 sloped bifurcating 10
(p) 0.00 0.14 peaked bifurcating 12
(q) 0.07 0.47 peaked bifurcating
(r) 0.72 1.55 peaked single-path
(s) 2.86 1.97 sloped single-path

aFigure numbers are given for the intersections represented below.

Table 5. Comparison between the Results of This Work and
the MRCI Results of Reference 49: rmsd between the
Optimized Structures (Å) and Cosine of the Angle Φ
between the Two Branching Planes (cos Φ = rIJ)

a

rmsd cos Φ

(b) 0.0359 0.9921
(c) 0.0162 0.9958
(d) 0.0203 0.9846
(e) 0.0410 0.9927
(g) 0.0140 0.9923
(k) 0.3707 0.6641
(k′) 0.0567 0.9826
(p) 0.0409 0.9765
(r) 0.0666 0.9854
(s) 0.0966 0.9913

Averages
SA-CASSCFb 0.0431 0.9882
SSRc 0.0551 0.7505
SFc 0.0696 0.8853
OM2c 0.1037 0.7947

aSee text for (k) vs (k′). bThis work, excluding (k). cRef 49.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.6b00384
J. Chem. Theory Comput. 2016, 12, 3636−3653

3646

http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.6b00384/suppl_file/ct6b00384_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.6b00384/suppl_file/ct6b00384_si_001.pdf
http://dx.doi.org/10.1021/acs.jctc.6b00384


from electronic structure calculations. To fix this, we used the

fact that the translational and rotational components of f AB are
free of singularities and smoothly varying near a conical

intersection; in particular, the translational component of f AB,

due exclusively to CSF f AB, should be equal to −i times the
matrix element of the electronic linear momentum operator,12

and the proper sign can be found unambiguously. In Figure 6

we show the results of θf
AB and f Y

AB (where Y is the absolute y

axis, in contrast to the y ̂ vector defining the branching plane)
and compare them with the model values from eq 56 and with
the corresponding matrix elements (pY

AB), respectively. The

excellent match between the two sets of values (maximum
relative errors: 0.19% for θf

AB, 0.01% for f Y
AB) serves to confirm

the existence of a conical intersection (as the area integrates to
π and not 0), the validity of the linear model for the
intersection, and the accuracy of the computed derivative
couplings, including the CSF f AB term.
In order to test the sensitivity and stability of the conical

intersection parameters to the basis set, we optimized (a) with
basis set contractions of increasing size (triple-ζ and quadruple-
ζ, both with polarization functions). The results are compared
in Table 6, and it is seen that the topography of the
intersection, as described by the parameters, does not change
significantly with the basis set.
The optimized MECI for benzene is characterized in Table 4

as peaked bifurcating. The representation in Figure 7 confirms
that this is the case but shows that it is very close to being
single-path: the ground-state curve shows a very flat maximum
in the −y direction. Nevertheless, the bifurcating character is
confirmed with the single-point calculations too, closely
following the model curve.
Relaxation on the ground state would occur, according to the

Figure 7 model, along the general −y direction, but with some
contribution of the symmetry-breaking x ̂ vector. There would
be thence two different minimum energy paths (MEP)
connecting the MECI with possibly two different ground-
state minima, although in this case it is more reasonable to
presume the two paths will arrive at the same minimum
structure. We computed the MEPs starting from the two
minima in Figure 7 (0.001 Å from the MECI), the result for
one of them is shown in Figure 8. Both the MECI structure and
the ground-state minimum are symmetric, but during the MEP
the symmetry is broken, which can be detected through the
bond length alternation (BLA) around the ring (the difference
between the sums of even and odd C−C bond lengths). In the
MEP shown in Figure 8 the BLA takes positive values, getting

Figure 5. Representation of the symmetric ethylene (a) conical intersection. (left) Three-dimensional view of the two potential energy surfaces in
the branching space. The bottom plane shows a contour plot of the energy difference, with an arrow representing −sAB (length σ, direction θs + π);
the molecule pictures represent the x ̂ (left) and y ̂ (right) vectors, and the x and y ranges extend from −1 to +1. The color scale for the base plane is
the same in all similar figures. (right) Plot of EA and EB around the intersection, for varying angle θ at a distance r = 0.001 Å (continuous lines); the
dashed lines represent the average energy and the energy difference; the circles are the values obtained from actual single-point calculations. No
fitting is involved in these figures.

Figure 6. Values of θf
AB (red circles, left axis) and f Y

AB (blue circles,
right axis) for a circle surrounding the ethylene intersection (a). For
comparison, the analytical result from the model in eq 56 is shown as a
solid line, and the matrix elements of the electronic momentum
operator are show with blue crosses. The area below the solid line
integrates to π, a sign that there is a conical intersection inside the
loop.
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back to zero at the final minimum; the other MEP (not shown)
has the same energy values, but negative BLA.
Out of the intersections studied in this work, the one in s-

indacene (o) is the only sloped bifurcating intersection (Table
4). For comparison we show the representations of azulene (n)
and s-indacene (o) in Figures 9 and 10, respectively. The
intersection in azulene has a small Δgh and large σ, while that of
s-indacene has large Δgh and small σ, which results in a dramatic
change of topography.

In both systems the structure at the MECI is symmetric. In
azulene (n) both ground and excited state can be relaxed along
the −y (symmetry-maintaining) direction. In s-indacene only
the excited state is relaxed while maintaining the symmetry, the
relaxation direction for the ground state has significant
contribution from the symmetry-breaking x ̂ vector. This can
be rationalized from aromaticity and antiaromaticity rules.75

Azulene can act as an aromatic chameleon,76 with aromatic
character in both its ground state and first excited state;
therefore, the two states maintain the symmetry. s-Indacene is
antiaromatic in the ground state,77 so it breaks the symmetry
and localizes the π bonds, but it is aromatic in the excited state
and can relax to a symmetric and delocalized structure.
For s-indacene, we computed one MEP on the ground state

(the other one is related by symmetry) and one on the excited
state, starting from the minima in Figure 10, the results are
shown in Figure 11. On the ground state the BLA increases
significantly, reaching a value of 0.637 Å at the minimum, a sign
of the antiaromatic character of the electronic structure. On the
excited state (inset and negative ξ in Figure 11) the minimum is
found very close to the MECI, both in geometry and energy,
and the BLA remains practically zero, as corresponds to the
aromatic character of the excited state.
The PSB3 (protonated Schiff base with three double bonds)

molecule has been used as a model for retinal, and as a
benchmark system for electronic structure calculations.78,79 The
MECI topography Figure 12 is almost completely vertical (σ ≃
0), and the x ̂ and y ̂ vectors represent, respectively, a change in
BLA and torsion around the central bond. As for benzene
(Figure 7), the intersection can be classified as peaked
bifurcating, and in this case the minima on the ground-state
curve are located along the ±x direction, indicating that, from
the MECI, the relaxation of the BLA coordinate is preferred

Table 6. Conical Intersection Parameters for the Intersection (a) Optimized with Different Basis Set Contractionsa

Nbasis rmsd δgh Δgh σ θs

double-ζ 48 5.60 0.0949 0.5320 0.9550 0.0 0.60 1.07
triple-ζ 116 0.54 0.0929 0.5225 0.9570 0.0 0.60 1.08
quadruple-ζ 230 0.0923 0.5212 0.9702 0.0 0.62 1.10

aAlso reported are the total number of basis functions (Nbasis) and the root-mean-square deviation (mÅ) of the optimized geometry with respect to
quadruple-ζ.

Figure 7. Representation of the benzene (l) conical intersection.

Figure 8. Minimum energy path from the benzene MECI (l), on the
ground-state surface. Continuous lines show the energies of the two
electronic states degenerate at the MECI, and the dashed line (open
circles) shows the BLA corresponding to the structures along the
MEP. The initial structure is slightly off the MECI; the horizontal axis
represents the path length ξ in normalized mass-weighted coordinates
(divided by the square root of the total mass).
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over the torsion toward the cis or trans isomers. However, this
relaxation, in either +x or −x direction, leads to a transition
state connecting the cis and trans structures, and a bifurcation

point must be found in the path before the transition state.
Moreover, when mass-weighted coordinates are used, the x ̂ and
y ̂ directions are scaled differently, reducing the preference for
±x, since the y ̂ vector contains larger displacements of the
hydrogens. Therefore, although the initial relaxation occurs
along the BLA coordinate, any realistic pathway is expected to
proceed in the cis−trans axis very soon.
In Figure 13 we show two scans along the x ̂ and y ̂ directions

from the MECI of PSB3. It can be seen that in the y ̂ direction
the linear model is a reasonably good approximation for the
computed energies, but in the x ̂ direction the curvature is
significant and the linear approximation is only good for very
small displacements, and at distances longer than about 0.016 Å
the y ̂ direction becomes the favored one for the relaxation of
the ground state structure.

4.1. Exploring the Seam. Upon closer inspection, it
turned out that the symmetric ethylene conical intersection (a)
is not a MECI, a minimum in the intersection space, but a
saddle point.80 The average gradient sAB vanishes in the
intersection space (not in the branching plane), making it a
stationary point, but the energy can decrease, while still
maintaining the degeneracy, by distorting the geometry toward

Figure 9. Representation of the azulene (n) conical intersection.

Figure 10. Representation of the s-indacene (o) conical intersection.

Figure 11. Minimum energy paths from the s-indacene MECI (o), on
the ground-state surface (positive ξ) and excited-state surface
(negative ξ and inset). See Figure 8 for further description.
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the asymmetric structure (b) (or its specular image). This is an
opportunity to explore a path in the seam or intersection space.
Starting from the (a) structure, we computed two MEPs in

mass-weighted coordinates, with symmetry-breaking initial
distortions of the pyramidalized CH2. The MEPs were subject
to the additional constraints of conical intersections (eqs 62
and 63), this is straightforward with the PCO method used for
the optimizations (see also refs 81−83). This gives a set of
structures in the intersection space, forming a continuous path.
The results are shown in Figure 14.
The energy and significant structures are plotted in the top

panel, where it is clear that the central structure (a), marked
with ‡, is not a minimum. The structures at the left and right
ends are close to (b), but the energies cannot be directly
compared with the latter because the calculation settings are
different (specifically, here we used an average of four states,
while (b) was optimized with three states; see Table 1). The
bottom panel shows the variation of the conical intersection
parameters along the path. The pitch (δgh), asymmetry (Δgh),
and relative tilt (σ) are shown relative to their values at the
saddle point (see (a) in Table 3). The decrease in Δgh and σ

and the increase in δgh agrees with the differences between (a)
and (b) in Table 3 and are smooth and nonmonotonic (the
crossing of these three lines at almost the same point is most
probably fortuitous). Once the possible transpositions and sign
changes of the x ̂ and y ̂ vectors are considered, the variation of θs
is also found to be smooth and nonmonotonic and, given that
the y ̂ vector is symmetry-breaking at the saddle point, if the
direction of this vector is maintained, θs shows an
antisymmetric behavior in the plot. To quantify the extent to
which the branching plane, rather than the individual x ̂ and y ̂
vectors, changes, we computed the principal angles between the

Figure 12. Representation of the PSB3 (p) conical intersection.

Figure 13. Energies of PSB3 along the x ̂ and y ̂ directions. The lines
show the energies predicted by the linear model, circles, and crosses
are obtained from single-point calculations. Vertical lines near the
center show the region displayed in the right plot of Figure 12.

Figure 14. (top) Energy and structures along a MEP in the
intersection seam starting from structure (a). (bottom) Conical
intersection parameters along the path. To simplify the graphs, the
symmetric portions have been replaced with dashed lines. Φ is the
angle between the branching planes (see text).
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plane at each point and the plane at the saddle point.50 In
Figure 14 the “total” angle Φ51 is represented, showing a good
correlation with the path coordinate ξ.
As discussed earlier, when comparing with MRCI results,49 at

least two different transoid MECI structures can be optimized
for butadiene, (k) and (k′). In order to find out if they belong
to the same intersection space, we tried to find a path within
the intersection that connects the two structures. We first
optimized a transition state with the ΔEAB = 0 constraint and
then computed the MEP within the intersection space, as
above. The path obtained in this way did indeed connect the
(k) and (k′) structures, maintaining the degeneracy at every
point, and proving that the two structures are different local
minima in the same intersection space. The path is represented
in Figure 15. The intersection parameters and the branching

plane angle Φ are now computed relative to the (k) structure
(left side), not to the transition state. The main structural
difference is the rotation of a terminal CH2 group, and the (k′)
structure (right side) is a very shallow minimum. The change in
the intersection parameters along the path is more clearly
nonmonotonic, but it is still smooth.
4.2. Performance of Density-Fitted Two-Electron

Integrals. It is worth reporting briefly the significance that
the use of the density fitting technique for the representation of
the two-electron integrals has on the overall performance and
accuracy of the calculations. The systems studied in this work
are not particularly demanding in terms of computational
resources (they are actually quite simple), so all the calculations
could be run in a regular desktop workstation (Intel i5-4670
processor, with rotating HDD, on a single core but using a 4-

threaded OpenBLAS library). As a reference, the full MECI
optimization for s-indacene (o), which took six geometry steps,
each of them requiring one energy and three derivatives (gA, gB,
hAB), was finished in 116 min. The same calculation with
equivalent settings but with conventional two-electron integrals
took 604 min, more than 5 times longer. The rmsd between the
final geometries was 5.7 × 10−5 Å, and the relative differences
in the final conical intersection parameters were less than 1%.
More details about the impact of density fitting on specific
calculation steps and on the accuracy of forces and geometries
can be found elsewhere.31,32 Given that the errors in relative
energies are minimal84−86 and, as shown again in this work, the
surfaces are smooth and the gradients accurate, we see no
reason to resort to conventional two-electron integrals when
virtually the same results can be obtained at a fraction of the
computational cost.

5. SUMMARY

We have implemented analytical derivative couplings,
⟨ΨB|∇ΨA⟩, and nonadiabatic couplings, ⟨CB|∇H|CA⟩, for SA-
CASSCF wave functions in Molcas. The implementation
parallels closely the existing analytical gradients and is
compatible with conventional and density-fitted two-electron
integrals.
Nonadiabatic couplings can be used to locate and character-

ize conical intersections. We have optimized a set of conical
intersections in different systems, using the projected con-
strained optimization method, and characterized them with the
gradients and coupling, providing a first-order model for the
two electronic surfaces near the intersection structure in the
branching plane.
The systems studied are of different sizes, with active spaces

ranging from (2, 2) to (12, 12). In all cases the model surfaces
obtained from the characterization accurately describe single-
point energies computed at 0.001 Å of the intersection point
(see the errors in Table 3). This validates the use of a first-order
model to represent the conical intersection topography, as well
as the accuracy of the analytical gradients and nonadiabatic
couplings.
The conical intersection characterization collects some

information about the potential energy surfaces. We believe
that a standardized definition for the conical intersection
parameters and the vectors defining the branching space will
allow an easier comparison of different intersections (at
different structures, for different systems or computed with
different methods). Depending on the values of Δgh, σ and θs,
the intersection can be classified as peaked or sloped,
bifurcating or single-path. However, this can only describe
the close neighborhood to the intersection and does not
consider dynamical effects that should be included in a more
complete study.
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Figure 15. (top) Energy and structures along a MEP in the
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D. R., Köppel, H., Eds.; Advanced Series in Physical Chemistry 15;
World Scientific: Singapore, 2004; Chapter 5, pp 205−270.
(47) Sicilia, F.; Blancafort, L.; Bearpark, M. J.; Robb, M. A. J. Phys.
Chem. A 2007, 111, 2182−2192.
(48) Yarkony, D. R. J. Chem. Phys. 2005, 123, 204101.
(49) Nikiforov, A.; Gamez, J. A.; Thiel, W.; Huix-Rotllant, M.;
Filatov, M. J. Chem. Phys. 2014, 141, 124122.
(50) Björck, Å.; Golub, G. H. Math. Comput. 1973, 27, 579−594.
(51) Jiang, S. Geom. Dedic. 1996, 63, 113−121.
(52) Anglada, J. M.; Bofill, J. M. J. Comput. Chem. 1997, 18, 992−
1003.
(53) De Vico, L.; Olivucci, M.; Lindh, R. J. Chem. Theory Comput.
2005, 1, 1029−1037.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.6b00384
J. Chem. Theory Comput. 2016, 12, 3636−3653

3652

mailto:Ignacio.Fernandez@kemi.uu.se
http://dx.doi.org/10.1021/acs.jctc.6b00384


(54) Ragazos, I. N.; Robb, M. A.; Bernardi, F.; Olivucci, M. Chem.
Phys. Lett. 1992, 197, 217−223.
(55) Manaa, M. R.; Yarkony, D. R. J. Chem. Phys. 1993, 99, 5251−
5256.
(56) Bearpark, M. J.; Robb, M. A.; Schlegel, H. B. Chem. Phys. Lett.
1994, 223, 269−274.
(57) Keal, T. W.; Koslowski, A.; Thiel, W. Theor. Chem. Acc. 2007,
118, 837−844.
(58) Roos, B. O.; Lindh, R.; Malmqvist, P.-Å.; Veryazov, V.;
Widmark, P.-O. J. Phys. Chem. A 2004, 108, 2851−2858.
(59) Aquilante, F.; Gagliardi, L.; Pedersen, T. B.; Lindh, R. J. Chem.
Phys. 2009, 130, 154107.
(60) Ben-Nun, M.; Martínez, T. J. Chem. Phys. Lett. 1998, 298, 57−
65.
(61) Barbatti, M.; Paier, J.; Lischka, H. J. Chem. Phys. 2004, 121,
11614−11624.
(62) Barbatti, M.; Aquino, A. J. A.; Lischka, H. Mol. Phys. 2006, 104,
1053−1060.
(63) Cui, Q.; Morokuma, K. J. Chem. Phys. 1997, 107, 4951−4959.
(64) Yamamoto, N.; Bernardi, F.; Bottoni, A.; Olivucci, M.; Robb, M.
A.; Wilsey, S. J. Am. Chem. Soc. 1994, 116, 2064−2074.
(65) Olivucci, M.; Ragazos, I. N.; Bernardi, F.; Robb, M. A. J. Am.
Chem. Soc. 1993, 115, 3710−3721.
(66) Palmer, I. J.; Ragazos, I. N.; Bernardi, F.; Olivucci, M.; Robb, M.
A. J. Am. Chem. Soc. 1993, 115, 673−682.
(67) Bearpark, M. J.; Bernardi, F.; Olivucci, M.; Robb, M. A.; Smith,
B. R. J. Am. Chem. Soc. 1996, 118, 5254−5260.
(68) Bearpark, M. J.; Bernardi, F.; Clifford, S.; Olivucci, M.; Robb, M.
A.; Smith, B. S.; Vreven, T. J. Am. Chem. Soc. 1996, 118, 169−175.
(69) Bearpark, M. J.; Celani, P.; Jolibois, F.; Olivucci, M.; Robb, M.
A.; Bernardi, F. Mol. Phys. 1999, 96, 645−652.
(70) Garavelli, M.; Celani, P.; Bernardi, F.; Robb, M. A.; Olivucci, M.
J. Am. Chem. Soc. 1997, 119, 6891−6901.
(71) Garavelli, M.; Vreven, T.; Celani, P.; Bernardi, F.; Robb, M. A.;
Olivucci, M. J. Am. Chem. Soc. 1998, 120, 1285−1288.
(72) Quenneville, J.; Martínez, T. J. J. Phys. Chem. A 2003, 107, 829−
837.
(73) Martín, M. E.; Negri, F.; Olivucci, M. J. Am. Chem. Soc. 2004,
126, 5452−5464.
(74) Gonzalez, C.; Schlegel, H. B. J. Chem. Phys. 1989, 90, 2154−
2161.
(75) Rosenberg, M.; Dahlstrand, C.; Kilsa,̊ K.; Ottosson, H. Chem.
Rev. 2014, 114, 5379−5425.
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