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Abstract: A new method for calculating saddle points of reactions in solution is presented. The main characteristics
of the method are: (1) the solute–solvent system is described by the averaged solvent electrostatic potential/molecular
dynamics method (ASEP/MD). This is a quantum mechanics/molecular mechanics method (QM/MM) that makes use
of the mean field approximation (MFA) and that permits one to simultaneously optimize the electronic structure and
geometry of the solute molecule and the solvent structure around it. (2) The transition state is located by the joint use
of the free-energy gradient method and the mean field approximation. An application to the study of the Menshutkin
reaction between NH3 and CH3Cl in aqueous solution is discussed. The accuracy and usefulness of the proposed method
is checked through comparison with other methods.

© 2004 Wiley Periodicals, Inc. J Comput Chem 25: 1227–1233, 2004

Key words: solvent effects; Menshutkin reaction; QM/MM; ASEP/MD

Introduction

The determination of saddle points on free-energy surfaces for a
solution reaction is an open question in current computational
chemistry. In solution, any successful model must combine an
accurate description of the chemical reaction and the solute–
solvent interactions. In most cases a full quantum description of
the solute–solvent system is impractical or simply unfeasible due
to the large number of solvent molecules (several hundred) and
configurations (several thousand) that it is necessary to consider to
get statistically significant results. Things become even worse if
one tries to determine free-energy changes along the reaction path,
that is, the potential of mean force. In this case, the number of
calculations increases drastically and a full quantum representa-
tion, type Car–Parrinello,1 of the solute–solvent system is impos-
sible except in the simplest cases. For these reasons, in the study
of chemical reactions in solution one is compelled to introduce
approximations either in the description of the solute or in the
description of the solvent.

Two general methods are used in the study of solvent effects.
In the first, one simplifies the solvent description, which is implic-
itly represented through a continuous dielectric medium.2 In this
case, one focuses on the solute molecule that can be described at
exactly the same level as is usually employed for in vacuo calcu-
lations. Examples are the PCM2a,b or COSMO2e,f methods. The
main criticism of these methods is that they neglect the micro-

scopic structure of the solvent around the solute. Furthermore,
from a technical point of view it is not clear which are the values
of the radii that one must use to construct the solute cavity. The
main advantage of continuum models is their low computational
cost, similar to in vacuo calculations.

In the second, the solvent structure is obtained from simula-
tions. Here, we include Warshel’s empirical valence bond (EVB)
method3 and QM/MM methods.4–6 In both cases one obtains a
detailed description of the microscopic structure of the solvent
around the solute. EVB represents a reaction in terms of resonance
structures and requires a process of parametrization for each chem-
ical reaction. This method permits one to obtain, in an easy way,
free energies of molecules and processes in solution. In traditional
QM/MM methods one performs a quantum calculation for each
solvent configuration generated, so that the number of quantum
calculations is greatly increased in this approximation. As a con-
sequence, most calculations to date have been performed at a
semiempirical level,4 although in recent years, and thanks to
increasing computational capacity, several models have been pro-
posed where the quantum mechanical calculations are performed
at the DFT5 or HF6 level.
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The low computational cost of continuum models comes in part
from the introduction of the mean field approximation7f (MFA). In
this approximation the average of the energies of the different
solvent configurations is replaced by the energy of an average
configuration. The MFA can also be applied to QM/MM methods.
This approximation permits one to greatly reduce the number of
quantum calculations, and in consequence, to increase the quality
of the quantum description of the solute molecule. To date, two
QM/MM methods that make use the MFA have been proposed.
The first, known as RISM/SCF, was developed by the Hirata
group.8 Its main characteristic is that the solvent structure is
obtained by using an integral theory: the reference interaction site
method (RISM). The second, known as ASEP/MD,7 was devel-
oped in our laboratory, and is based on the introduction of the
averaged solvent electrostatic potential (ASEP) obtained from
molecular dynamics (MD) simulations into the solute molecular
Hamiltonian.

In this article we address the problem of the determination of
transition states (TS) for reactions in solution. To locate the TS on
the free-energy surface (FES) we use a variant9 of the free-energy
gradient method10 where the derivatives of the free energy are
simplified by using the mean field approximation. In this way, both
the first and second derivatives of the free-energy surface can be
calculated analytically, increasing the computational efficiency of
the method.

The proposed method presents several advantages. First, during
the ASEP/MD procedure the solute charge distribution and the
solvent structure around it become mutually equilibrated. Second,
one can use the same (or almost the same) level of quantum
mechanical theory as for in vacuo calculations, that is, bond-
forming and breaking process can be adequately described. Third,
once one has determined the solvent structure (through molecular
dynamics calculations), the free-energy derivatives are calculated
analytically. This greatly increases the ability to explore the free-
energy surface and to characterize stationary points. Finally, the
model provides detailed information on the solvent structure and
on its change during the reaction, so that it is possible to elucidate
whether specific solvent molecules influence the reaction mecha-
nism directly.

As an application, in this work we study the Menshutkin
reaction (MR) NH3 � CH3Cl 3 CH3NH3

� � Cl�. From a
mechanistic point of view the MR is a special SN2 reaction
where the reactants are neutral. Along the reaction coordinate
there is a creation of two ions of opposite sign. This process is
very unfavorable in the gas phase. In solution, however, the
solvent significantly reduces the energy barrier and stabilizes
the products. One advantage of this reaction is that it has been
studied with RISM/SCF,8g QM/MM,11,12 and continuum13–15

models, and hence, it is possible to compare the performance of
the different methods.

The rest of the article is organized as follows: In the next
section the computational method is explained, and especial atten-
tion is paid to the definition of the free-energy surface and to the
approximations introduced into the calculation of the first and
second derivatives of the FES. The results are then discussed, and
then we present the main conclusions.

Method

In this section we describe the extension of the ASEP/MD ap-
proach to studying reactions in solution. We begin by defining the
nature of the free-energy surface. We estimate the approximate
standard free-energy difference between the reactant and transition
state in solution as

�Gs
0 � �E � �Gint (1)

where �E is the ab initio difference between the two QM models
(transition state and reactant in our case) and �Gint is the differ-
ence in the solute–solvent interaction free energy. Although for-
mally this equation takes the same form as in the QM-FE approach
of Jorgensen et al.16 the meaning of the �E term is different, first
because the geometries of the transition state and reactant are
optimized in solution, and second, because the internal energy and
charge distribution of the solute are determined in the presence of
the solvent (see below). Obviously, the change in the geometry and
charge distribution of the solute also affects the calculation of the
�Gint term.

The saddle-point and minimum structures were located on this
approximate free-energy surface, Gs

0. Once the stationary points
on the approximate FES have been obtained, the total activation
free-energy changes were calculated by adding the zero-point
energy and the entropy and thermal contributions to �E. It is
important to note that these contributions are added a posteriori
and that, in our case, the vibrational frequencies and molecular
geometries necessary for the calculation of the vibrational, rota-
tional, and translational partition functions of the solute were
calculated in solution.

The different energies, geometries, vibrational frequencies, and
wave functions necessary to calculate �Gs

0 and the zero-point and
entropy corrections were obtained by using the ASEP/MD method.
This is an iterative procedure that alternates molecular dynamics
with quantum mechanics calculations. During the MD simulation
the geometry and charge distribution of the solute molecule are
considered as fixed. From the MD data we obtain the ASEP that is
introduced as a perturbation into the solute molecular Hamiltonian.
By solving the associated Schrödinger equation we get a new
solute charge distribution and geometry that serves as input for the
next MD calculation. The process terminates when convergence in
the solute charges, energy, and geometry is reached. The procedure
is illustrated in Figure 1.

Calculation of �E

The ab initio energy difference between the two QM structures is
defined as

�E � EB � EA � ��B�ĤB
0 ��B� � ��A�ĤA

0 ��A� (2)

Here, ĤX
0 is the in vacuo Hamiltonian of the structure X, and �X

is the wave function of the structure X calculated in the presence
of the perturbation due to the solvent. �X is obtained by solving
the effective Schrödinger equation:
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�ĤX
0 � ĤQM/MM���� � E��� (3)

The interaction term, ĤQM/MM, takes the following form:

ĤQM/MM � ĤQM/MM
elect � ĤQM/MM

vdw (4)

ĤQM/MM
elect �� dr � �̂ � �V̂S�r; ��� (5)

where �̂ is the solute charge density and the brackets denote a
statistical average. The term �V̂S(r)� is the averaged electrostatic
potential generated by the solvent at the position r, and is obtained
from MD calculations where the solute molecule is represented by
a set of atomic charges and geometry that are kept fixed during the
simulation. The term ĤQM/MM

vdw is the Hamiltonian for the van der
Waals interaction, in general represented by a Lennard–Jones
potential. Given that the solvent structure, and hence, the ASEP, is
a function of the solute charge density, these two quantities have
to be determined iteratively. At each step of the ASEP/MD cycle,
the solute charges used in the MD calculation were obtained by
fitting the molecular electrostatic potential (MEP) of the solute
molecule in the presence of the solvent perturbation. The CHELPG
program17 was used.

In our study, the NH3 and CH3Cl molecules were described
using quantum mechanical methods. The rest of the system con-
sisting of the solvent molecules was described through classical
mechanics. The basis set used in the description of the quantum
part was the aug-cc-pVDZ.18 The level of calculation was DFT.
Following the article of Truong et al.13 we used a combination of
the hybrid Becke’s half-and-half functional for exchange and Lee–
Yang–Parr functional for correlation (BH&HLYP). From a com-
parison of several methods those authors conclude that this func-

tional gives the best overall performance. All QM calculations
were performed with the Gaussian9819 suite of programs.

Calculation of �Gint

This magnitude is necessary to calculate the activation free energy
but not in the determination of the gradient and Hessians that are
calculated directly as the derivatives of the potential energy (see
below). In fact, �Gint is calculated only after the in solution
structures of the TS and reactants have been determined.

The free-energy perturbation method was used to determine the
free-energy change from the TS to the reactants. The solute ge-
ometry was assumed to be rigid and a function of the perturbation
parameter (�) while the solvent was allowed to move freely.

The contribution of the fluctuations of the QM subsystem to the
total free energy, the vibrational entropy of the solute, was calcu-
lated with the harmonic contribution. When � 	 0, the solute
geometry and charges and the solute–solvent Lennard–Jones pa-
rameters correspond to the reactants. When � 	 1, the charges,
Lennard–Jones parameters, and geometry are those of the transi-
tion state. For intermediate values a linear interpolation is applied.
The free-energy difference between the states at � and � � ��
calculated through free-energy perturbation (FEP) theory is20,21

�G� � �RT ln�exp��
ĤQM/MM�� � ��� � ĤQM/MM���

RT ��
�

(6)

where R is the gas constant, T is the absolute temperature and � ��

denotes the ensemble average at state �. The total free-energy
change between reactants and transition state is thus

�Gint � �
�	0

�	1

�G� (7)

A value of �� 	 0.025 was used. That means that a total of 40
separate molecular dynamics simulations were carried out to de-
termine the free energy. To test the convergence of the calculation,
the difference in interaction free energies calculated forward—
from the minimum to the saddle point—and backward—from the
saddle point to the minimum—are compared. For all the results
reported below, the backward and forward activation free energies
agree to within less than 5%.

In eq. (6), the solute–solvent interaction energy, ĤQM/MM, is
calculated classically. This point needs clarification. In the deter-
mination of the energies, geometries, and charge distribution of
reactants and transition state in solution the solute is quantum
mechanically represented. However, once one has determined
these magnitudes, the calculation of �Gint is performed through
molecular dynamics simulations where the solute is represented by
a set of point charges. In principle, no improvement is expected
from replacing the classical by the quantum representation. This is
first because the solute charges used in the MD calculation were
obtained by fitting the MEP, and hence, they reproduce the
QM/MM solute–solvent electrostatic energy, and second, because
the free energy is a state function, and hence, its value depends
only on the initial and final states (which are quantum mechani-

Figure 1. ASEP/MD scheme.
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cally determined) and not on the particular set of charges used in
the intermediate steps. For instance, the ASEP/MD method could
have been used to obtain the solute charges appropriate for the
intermediate geometries. These charges would be different from
the ones actually used in the simulations, which are interpolated
between the initial and final states. However, as was indicated
above, the final energy must be independent of the particular set of
charges used in the intermediate steps.

The MD calculations were performed using the program
MOLDY.22 In each case, 214 TIP3P23 water molecules were
simulated at fixed intramolecular geometry. The solute–water po-
tential parameters for the reactants were taken from Carlson et al.24

(CH3Cl) and Ferrario et al.25 (NH3), and the parameters for the TS
were taken from Gao and Xia.11 Periodic boundary conditions, an
appropriate cutoff (9.0 Å), and a cubic simulation box of 18.6 Å
side were assumed. A time step of 0.5 fs was used. The electro-
static interaction was calculated with the Ewald method. The
temperature was fixed at 298 K by using a Nosé–Hoover26 ther-
mostat. Each MD calculation simulation was run for 150,000 time
steps (50,000 equilibration, 100,000 production).

Quantum Mechanical Determination of Minimum and
Saddle Points

In this section we describe the calculation of the gradient and
Hessian on the FES. The force on the free-energy surface (FES) is
defined as:10

F�r� � �
�G�r�

�r
� ���V�r�

�r
� (8)

where G(r) is the free-energy, V is the sum of the contributions
associated with the interaction between the atoms of the solute
molecule, Vi, and with the solute–solvent interaction energy, Vs,
and the brackets denote a statistical average.

The Hessian is:

H � � �2V

�r�r
� � ���V

�r

�VT

�r
� � ���V

�r
���V

�r
� T

(9)

H � � �2V

�r�r
� � �
�F2� � ��F�2� (10)

where the superscript T denotes the transpose and � 	 1/RT. The
last term in eq. (10) is related to the thermal fluctuation of the
force.

At this point we introduce two approximations. First, and
following the spirit of the mean field approximation used in
ASEP/MD, we replace the average value of the force by the force
of the mean configuration:

F�r� � �
��V�

�r
(11)

H �
�2�V�

�r�r
� ���V

�r

�VT

�r
� � �

��V�

�r

��V�T

�r
(12)

Second, we neglect the force fluctuations. With this approxi-
mation the Hessian is

H �
�2�V�

�r�r
(13)

Because the stationary points are defined as points where the
gradient vanishes, this last approximation has no effect on the
geometry of these points. The Hessian is used only to accelerate
the search procedure.

The effect of these two approximations has been analyzed in a
previous article.9 We showed that the use of the MFA introduces
only small errors into the dipole moment, energies, and gradients.
Furthermore, a detailed analysis of the fluctuation term contribu-
tion showed that the errors introduced in the trace of the Hessian
in the formamide–water systems when we neglected the fluctua-
tion term was less than 5%. A similar error is introduced into the
computed frequencies for methanol in the liquid state.

Once the gradient and Hessian are available, the positions of
the minimum and saddle point on the FES are determined by the
RFO27 algorithm. It must be stressed that in our method, the
solvent is in equilibrium with the charge distribution of the solute
at each step of the optimization. As a consequence, nonequilibrium
contributions to the activation free energy are completely ne-
glected and, if necessary, must be included a posteriori.

Results and Discussion

To examine the performance of the proposed method we consider
the Menshutkin NH3 � CH3Cl reaction in water. The system was
partitioned into a QM subsystem (the NH3 and CH3Cl molecules)
and an MM system (214 water molecules). The iterative optimi-
zation ASEP/MD procedure based on the use of the free-energy
gradient method was applied to obtain the optimized structure for
the separated reactants and transition state in solution. Then, the
activation free-energy change between reactants and TS was de-
termined. In principle, our method yields a true stationary point on
the free-energy surface in solution. The computed force constants
confirm this.

The Menshutkin reaction has already been studied by different
workers using different methods. In the two QM/MM studies11,12

that have been performed, the solute was represented at the AM1
level. Gao and Xia11 construct a two-dimensional surface, and the
transition state was located on this reduced surface. Hirao et al.12

locate the TS on a multidimensional free-energy surface obtained
by using a variant of the free-energy gradient method proposed by
Okuyama–Yoshida et al.10a The studies performed with the con-
tinuum model, PCM14,15 and GCOSMO,13 used different levels of
ab initio calculations, HF, MCSCF, MP2, MP4, DFT. Truong et
al.13 conclude that, taking as reference the MP4 value, DFT is
computationally cheaper and yields more accurate results than
MP2 and MCSCF. Consequently, it is our choice in this study. The
results of these authors at the DFT level are similar to those
obtained by QM/MM methods. Finally, Naka et al.8g estimate the
free-energy profile by the RISM-MP2 method at the Hartree–Fock
optimized geometries along a distinguished reaction coordinate.
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Table 1 gives the geometrical parameters, dipole moments,
atomic charges, and solute–solvent interaction energies of the
reactants and TS in gas phase and in solution. The calculation level
used slightly overestimates by �0.18 D the experimental28 in
vacuo dipole moment, 1.87 D, of CH3Cl. The NH3 charge distri-
bution is described better. This point is important because in a
previous article we showed the importance that a correct descrip-
tion of the solute charge distribution has on the prediction of
thermodynamical and structural properties of solutions. Our results
slightly improve those obtained by Truong et al.,13 who use the
same functional but a basis set of lower quality.

As shown in Table 1, solvation has an appreciable effect on the
polar reactant molecules. The dipole moments of CH3Cl and NH3

increase by 28 and 44%, respectively. In CH3Cl, the charge on the
hydrogen atoms hardly changes, and the change in the dipole
moment is associated to the polarization of the C—Cl bond. For
CH3Cl, the C—Cl distance increases from 1.791 to 1.798 Å when
one passes from vacuum to solution. The solution values are given
as the average value of the last five ASEP/MD cycles. The stan-
dard deviations are minimal, less than 0.001 Å, 0.1°, and 0.05 D.
This indicates that the size of the simulations (75 ps) is adequate:
the fluctuations associated with the limited size of the simulation

have a negligible effect on the geometric parameters. The Cl—
C—H angle compresses slightly from 108.1° to 107.7°. Similar
effects are found for NH3: the N—H bond elongates by 0.003 Å
and the H–N–H angle is compressed by about 1°.

The solvent effects on the transition state structure are larger:
the C—Cl distance decreases from 2.443 to 2.183 Å when one
passes from gas phase to solution, and the N–C distance increases
from 1.837 to 2.186 Å. In solution, the TS structure is more
symmetric, and as a consequence, the dipole moment is lower. The
CHELPG charge for the leaving group (Cl) decreases from �0.71
to �0.69 when one passes from vacuum to aqueous solution.
Simultaneously, the charge on the N atom increases from �0.36 to
�0.70. Given that the charge separation increases along the reac-
tion coordinate, these results indicate that the TS obtained in
solution is earlier than the TS in the gas phase, which is in
agreement with the Hammond postulate.

As for the free energy of activation, our in vacuo result, 44.9
kcal/mol at room temperature, compares very well with the Truong
et al.13 result, 45.7 kcal/mol, as expected from the similar level of
calculation. These results are also in good agreement with the
AM1 result of Gao and Xia,11 46.7 kcal/mol. Solvent effects
decrease appreciably the activation free energy. In solution our
model yields a value of 25.64 kcal/mol. This value lies between the
GCOSMO13 (24.8 kcal/mol) and AM1/MM values (26.3 kcal/mol
if a two-dimensional mapping11 is used to locate the TS and
26.8–27.1 when the FEG is used12). Amovilli et al.14 using PCM
and a 6-311G** basis set obtain 16.8 kcal/mol at the Hartree–Fock
level and 20.5 kcal/mol at the CASSCF level. A similar value, 20.9
kcal/mol, is obtained by Naka et al.8g with their RISM-MP2
calculation. Experimental data are not available for this system.
There is an experimental29 result (23.5 kcal/mol) for a similar
reaction where the CH3Cl is replaced by CH3I. The differences
obtained between the different continuum models, GCOSMO and
PCM, are due in part to the level of calculation, but also to the
different choice of the cavity radius. In GCOSMO, the atomic radii
are adjusted to reproduce free energies of hydration for a repre-
sentative set of small molecules and ions. In PCM, they are
calculated, in general, as 1.2 times the van der Waals radii. Given
the great difference that exists between the different versions of the
continuum model, a comparison with QM/MM values is compli-
cated. In general, continuum models yield lower activation free
energies than QM/MM methods. However, the differences are
small and, as has been established in previous articles, we can
conclude that in this kind of reaction a nonspecific electrostatic
solvent–solute interaction makes the greatest contribution to the
TS stabilization.

A direct comparison between our result and other QM/MM
results is also complicated by the different level of calculation used
(DFT in our case and AM1 in refs. 11 and 12). Furthermore, in the
calculation of the activation free energy we include the entropy
corrections, which are neglected in the AM1 calculations. How-
ever Gao and Xia11 showed that the AM1 results without entropy
corrections provide a reasonable approximation to the ab initio
free-energy profile obtained at the MP4SDTQ/6-31�G(d) level
with scaled frequencies. The same level of calculation (AM1) is
used by Hirao et al.12 If we take the AM1 results as valid, then the
agreement between them and our results permits us to conclude
that the use of the mean field approximation in the calculation of

Table 1. Geometries, Dipole Moments, Atomic Charges, and Solute–
Solvent Interaction Energies of the Reactants and Products of the
Menshutkin Reaction in the Gas Phase and in Aqueous Solution.

In vacuo In solution

CH3Cl
Eint — �9.36 kcal/mol
C—H 1.086 Å 1.084 Å
C—Cl 1.791 Å 1.798 Å
H—C—Cl 108.1° 107.7°
qC �0.162 e �0.106 e
qH 0.115 e 0.118 e
qCl �0.183 e �0.247 e
� 2.07 D 2.66 D
NH3

Eint — �15.47 kcal/mol
N—H 1.009 Å 1.012 Å
H—N—H 107.3° 106.3°
qN �0.898 e �1.185 e
qH 0.299 e 0.395 e
� 1.54 D 2.22 D
(NH3CH3Cl)‡

Eint — �51.01 kcal/mol
C—H 1.075 Å 1.073 Å
C—N 1.837 Å 2.186 Å
C—Cl 2.443 Å 2.183 Å
N—H 1.010 Å 1.014 Å
Cl—C—H 82.3° 93.8°
C—N—H 110.6° 111.0°
qC �0.022 e �0.100 e
qN �0.361 e �0.704 e
qCl �0.710 e �0.686 e
qH(C) 0.126 e 0.198 e
qH(N) 0.239 e 0.298 e
� 12.48 D 11.09 D
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gradient and Hessian does not introduce significant errors into the
determination of transition states.

Table 2 displays the different contributions to the activation
free energy. As one can see, the most important contribution to the
decrease of the activation energy when one passes from gas phase
to solution comes from the differential solvation free energy. In
aqueous solution the TS is better solvated than the reactants. This
table also gives the differential solute–solvent interaction energy
and its components. As can be seen, the solvent stabilization
(�26.18 kcal/mol) is mainly due to the electrostatic (permanent �
induced charges) component. In fact, the Lennard–Jones contribu-
tion is positive. It stabilizes the reactants in comparison to the TS.
The interaction energy does not include the energy spent in polar-
izing the solvent (in this case, because nonpolarizable molecules
are employed for the solvent, it is its structure that is polarized). In
classical electrostatics this distortion energy can be obtained as
�1/2 of the interaction energy. If the two contributions are added
together one obtains the real stabilization produced by the solvent,
�13.09 kcal/mol, which agrees very well with the result obtained
with the much more computationally demanding free-energy per-
turbation method, �13.70 kcal/mol.

The evolution of the solvation along the reaction coordinate can
be characterized by the changes in the radial distribution functions
(rdf), which are shown in Figure 2. The most remarkable fact is the
displacement in the position of the first peak of the Cl—O and
N—O rdfs from reactants to TS. Simultaneously, the height of the
first peak increases, indicating a stronger interaction of the TS with
the solvent. Our rdfs compare very well to those obtained by Hirao
et al., confirming the validity of the mean field approximation.

Summary

A new method for determining saddle points in solution has been
presented. It is based on the use of the mean field approximation,
and permits one to sample the QM/MM potential energy surface
properly and to obtain the reaction paths in the solvent environ-
ment and the free-energy changes associated with the reactions.
The main characteristics of the method are: (1) high-level ab initio

quantum calculations are used in the description of the solute
molecule; (2) the information about the solvent structure is ob-
tained from MD simulations; (3) the free-energy derivatives are
calculated analytically; (4) true stationary points are found, which
avoids the definition of a distinguished reaction coordinate. The
use of the MFA permits one to greatly reduce the number of
quantum calculations and facilitates the calculation of the deriva-
tives. These two points greatly increase the ability of the method
to explore the free-energy surface and to find stationary points.

As application of the new method we carried out a study of the
Menshutkin reaction NH3 � CH3Cl3 CH3NH3

� � Cl� in aque-
ous solution. In agreement with previous studies we found that the
activation energy is greatly reduced by the solvent. In solution, the
TS structure is more symmetric than in the gas phase. In agreement
with the Hammond postulate, the TS obtained in solution is earlier
than the TS in the gas phase.

It was shown, through comparison with the results provided by
other methods, that the MFA does not introduce significant errors

Table 2. Activation Free Energy (In kcal/mol) and Its Components (�V0

Stands for the Zero-Point Energy and Thermal Contributions; for the
Meaning of the Rest of the Terms, See the Text), and Variation of the
Solute–Solvent Interaction Energy from Transition State to
Reactants, �Eint, and Its Electrostatic, �Eelec, and Lennard–Jones,
�EL-J, Components.

In vacuo In solution

�E 32.70 27.48
�V0 12.23 11.86
�Gint — �13.70
�Gs

0 (total) 44.93 25.64
�Eelec �30.50
�EL-J 4.32
�Eint �26.18

Figure 2. Radial distribution functions for reactants (top) and transi-
tion state (bottom) of the Menshutkin reaction. Four functions are
represented: Cl—H (continuous line), Cl—O (dashed line), N—O
(dotted line), and C—O (dash-dotted line).
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into either the position of the saddle point or the height of the
barrier. We can conclude that the joint use of the ASEP/MD
method in the determination of the electronic structure of the
solute and the free-energy gradient method and MFA in the de-
termination of the free-energy derivatives constitutes a valid and
efficient method for the study of reactions in solution.
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