
Framework-Based Design of a New All-Purpose
Molecular Simulation Application: The Adun Simulator

MICHAEL A. JOHNSTON,1 IGNACIO FDEZ. GALVÁN,2 JORDI VILLÀ-FREIXA1

1Computational Biochemistry and Biophysics Laboratory, Research Group on Biomedical
Informatics (GRIB), Institut Municipal d’Investigació Mèdica and Universitat Pompeu Fabra,

C/Doctor Aiguader, 80 08003 Barcelona, Catalunya, Spain
2Departamento de Quı́mica-Fı́sica, Universidad de Extremadura. Avda. de Elvas s/n, 06071

Badajoz, Spain

Received 20 May 2005; Accepted 20 June 2005
DOI 10.1002/jcc.20312

Published online in Wiley InterScience (www.interscience.wiley.com).

Abstract: Here we present Adun, a new molecular simulator that represents a paradigm shift in the way scientific
programs are developed. The traditional algorithm centric methods of scientific programming can lead to major
maintainability and productivity problems when developing large complex programs. These problems have long been
recognized by computer scientists; however, the ideas and techniques developed to deal with them have not achieved
widespread adoption in the scientific community. Adun is the result of the application of these ideas, including pervasive
polymorphism, evolutionary frameworks, and refactoring, to the molecular simulation domain. The simulator itself is
underpinned by the Adun Framework, which separates the structure of the program from any underlying algorithms, thus
giving a completely reusable design. The aims are twofold. The first is to provide a platform for rapid development and
implementation of different simulation types and algorithms. The second is to decrease the learning barrier for new
developers by providing a rigorous and well-defined structure. We present some examples on the use of Adun by
performing simple free-energy simulations for the adiabatic charging of a single ion, using both free-energy perturbation
and the Bennett’s method. We also illustrate the power of the design by detailing the ease with which ASEP/MD, an
elaborated mean field QM/MM method originally written in FORTRAN 90, was implemented into Adun.

© 2005 Wiley Periodicals, Inc. J Comput Chem 26: 1647–1659, 2005

Key words: molecular simulation application; Adun simulator

Introduction

It may be a truism to say that computational science is focused on
the development of new algorithms and procedures to produce
accurate scientific results. However, this statement logically leads
to the conclusion that software development in computational
science will tend to be “Algorithm Centric,” that is, a program is
a vehicle that enables the implementation of an algorithmic solu-
tion to some problem. In this paradigm issues of algorithm speed
and efficiency take a front seat, and frequently productivity is
measured in terms of program run-time with a certain parameter
set. A procedural methodology dominates regardless of whether
the underlying language is procedural or object-oriented. This is a
valid approach for small well-focused projects where it is unlikely
that the program will undergo much revision after a certain goal is
reached.

However, as the use of computational methods expands across
all disciplines the need for more powerful and advanced programs

is becoming evident. Such programs are inevitably larger, display
increased complexity and undergo continuous development, usu-
ally by more than one person. Speed is no longer the main metric
of productivity as the competing factors of development time and
maintainability begin to dominate. New algorithms and better
implementations are published monthly, and it is desirable to
implement them rapidly while they are still the “state of the art.”
The long life cycle of these programs means members regularly
join and leave the development team, and so it is also desirable that
new members can come to grips with the program in the minimum
time possible.

Unfortunately, an algorithm-centric approach cripples the de-
velopment of such programs, for example, Molecular Simulators,
by raising the costs associated with maintainability and implemen-
tation time to exorbitant levels (Fig. 1). Focusing exclusively on
algorithms leads to a rigid program structure with variable names,

Correspondence to: J. Villà-Freixa; e-mail: jvilla@imim.es

© 2005 Wiley Periodicals, Inc.



structure types, code groupings, data flow, etc., heavily tailored to
currently implemented algorithms. The flow of control is often
unclear, and hidden dependencies are common, causing bugs to
proliferate. For a new developer understanding this structure pre-
sents an almost insurmountable burden, and even for experts
coding new functionality into such a structure is usually a pains-
taking and time-consuming task. Finally, if an algorithm-centric
approach is maintained code entropy accelerates because the desire
to keep the original algorithms optimal structure intact and the
competing desire to optimize the new algorithm leads to code
whose separate parts use different structures for the same type of
data.

Essentially, the traditional approach fails to take into account
the fact that algorithms form only a low level part of a large,
complex programs structure.

New Methods

To produce code that allows rapid development and remains easy
to maintain we need to shift our view away from algorithms alone
and take into account the structure of the program. This process is
greatly aided by the proper application of object-oriented tech-
niques (OOP) and concepts. The process of breaking code into
objects that combine data and functionality intrinsically adds better
structure to a program. These objects, however, must be encapsu-
lated—the inner workings of an object should be irrelevant, only
its methods and the data it provides matters. Encapsulation enables
code reuse, one of the main aims of OOP and a key factor in
decreasing development time.

The process of breaking code into objects, called factoring,
is not always obvious, and may be done in many equally valid
ways. Design patterns1 assist developers in this task by provid-
ing effective solutions to common problems in OOP design.
However, as programs grow requirements change and unseen
problems develop. It is thus important to monitor the programs
structure, making small frequent changes to constantly evolve
the design. This practice is known as refactoring, and first
achieved prominence with the development of extreme pro-
gramming.2,3

Probably the most powerful concept enabled by object orien-
tation is polymorphism, the idea that objects that provide the same
services (i.e., perform the same functions) should provide the same
interface (Fig. 2). This enables one to be switched to another
without affecting the rest of the program. Polymorphism also
requires that the return types and arguments to these methods
should be the same (or at least themselves be polymorphic).
Indeed, for a certain type of (nonobject) data the same data
structure should be used all over the program. It is not much use
if the objects in the program don’t “talk” the same language, that
is, they operate on and provide different data structures so they
then require a translating layer to cooperate.

Figure 1. Procedural programming methods can lead to huge time
costs in large programs. By taking a higher level view and concen-
trating more on the requirements (Req. in the figure) and design of the
program we can dramatically reduce the cost of maintenance (addition
of new code, modifying old, training new developers, etc.)

Figure 2. Once an object uses a certain name to send a message, only objects that have a
method with that name can respond, that is, the object is coupled to a certain interface (A).
When another object is available that performs the same service but with a different name it
cannot be used without a translation layer (B). If the objects had the same name they would be
polymorphic, and could be used interchangeably. We enable polymorphism by defining one
uniform interface for objects that provide a certain service (C).

1648 Johnston, Fdez. Galván, and Villà-Freixa • Vol. 26, No. 15 • Journal of Computational Chemistry



Frameworks

When different applications are developed in the same domain
using the preceding methods, the same objects, interactions, and
data types often occur over and over. The codifying of these
standard objects, their interfaces, how they communicate, and the
data types passed between them is the goal of a framework.4

An excellent definition of a framework can be found in the
seminal program design book “Design Patterns.”1

[a framework] dictates the architecture of your application. It
will define the overall structure, its portioning into classes
and objects, the key responsibilities thereof, how the classes
and objects collaborate, and the thread of control. A frame-
work predefines these design parameters so that you . . . can
concentrate on the specifics of your application. The frame-
work captures the design decisions that are common to its
application domain.

In essence, a framework identifies the building blocks of these
programs and how those blocks interact.

When a framework exists for a certain domain developers can
use it to create applications. Initially (when the framework is new)
developers create all the necessary classes themselves based on the
framework guidelines. Classes created in this manner are called
components, and are usually collected into a component library.
Once this library reaches a certain state, indicated by the number
and diversity of the components it contains, it is used as the basis
on which all the applications in the domain are built, thus enabling
code reuse. Because the classes in the library have been designed
according to the framework, they intrinsically work together. Mak-
ing a new application is then as simple as combining the compo-
nents in new ways or using a number of existing components and
creating others for functionality the library does not provide.

By using a framework we gain a number of other advantages as
well. It makes creating new components easier by providing spec-
ifications and templates for implementing them—when we want to
add new functionality we simply identify the correct framework
class, which tells us the interface we must provide and what
information we have access to, and encapsulate our code. The
problem of objects making different assumptions about their en-
vironment is removed because the framework defines standard
ways to exchange data and access services.

Frameworks not only aid development but also maintenance.
By their very nature they maintain code stability and reduce the
process of code-entropy by orders of magnitude, and the rigorous
guidelines they embody are invaluable for open source projects
where large numbers of people can contribute to the code base.

Adun Overview

Adun has been designed, following the above considerations, as a
platform to develop the multiple types of simulations that are
central in computational (bio)chemistry and that in particular rep-
resent the main lines of research of our own group. These include
all simulation levels, that is, micro (all atom molecular dynamics
or Monte Carlo), meso (dissipative particle dynamics and related
methods), and macro (whole cell simulations). Initial development

of the program is concentrated on molecular dynamics (MD)
applications while keeping in mind the final goal of an all purpose
simulator. In the case of MD, Adun basically reads in topology
information regarding a system and then, by evaluating the sys-
tems potential energy and the corresponding forces, outputs tra-
jectories detailing the systems evolution through time. These tra-
jectories can then be analyzed using the ideas of statistical
mechanics to attain measurements of free-energy differences and
other important quantities.

A simulator is an archetype of the complex applications now
required by the scientific community. There are a host of different
methods and protocols that can be used to generate MD trajecto-
ries, and the state of the art in simulation techniques changes
rapidly and continuously. In addition, the simulation requirements
can differ dramatically from lab to lab, and it is impossible for a
single developer or lab to satisfy them all. Therefore, we require a
platform that will enable rapid and easy implementation of yet to
be determined functionality while simultaneously avoiding bur-
dening developers with a convoluted and hard to understand pro-
gram.

The basis of Adun derives from the observation that the dif-
ferent varieties of MD simulations are essentially variations of one
fundamental MD design. This fact, coupled with our requirements,
immediately suggests that a MD framework would provide the
necessary foundation for our application. To this end we have
developed the Adun Framework, which provides a coherent design
for any MD simulator and confers all the advantages noted in
section 1.

Implementation

The framework and Adun itself have been implemented in Objec-
tive-C, which provides Adun with a versatility that would be
otherwise extremely hard to attain. Foremost, Objective-C is a
dynamically typed language. This is a key factor, as it enables
pervasive polymorphism, which is the cornerstone of the Frame-
work, through dynamic-typing and binding—features not available
with C�� or Fortran. This run-time dynamism also provides the
basis for the controller class (see later) methodology as well as
allowing other features such as distributed objects and run-time
class extension through categories.

In addition, Objective-C is a pure superset of C. It consists of
a thin layer over standard C, which not only makes it very easy to
learn for anyone familiar with C, but also means we can use C to
code the low-level algorithms where performance is the highest
priority as well as use scientific C libraries such as GSL (Gnu
Scientific Library).

Furthermore, we gain access to the powerful GNUStep (Cocoa)
application development framework. These are a set of (GPL)
object-oriented Objective-C libraries that provide many basic ob-
ject types, advanced OO cabitilies (Key-Value coding, notifica-
tions, object serialization, etc.) and impressive GUI building fa-
cilities. Finally, the standard Objective-C compiler is the
ubiquitous GCC enabling Adun to compiled on any UNIX plat-
form as well as Mac OS-X (where Objective-C and Cocoa are the
native language and libraries, respectively).

The Adun Simulator 1649



Current Features

Using this framework-based development model we have easily
implemented some typical and some specific features into Adun.
Among them, the surface-constraint all-atom solvent model
(SCAAS)5 and the Langevin dipoles model6 for representing sol-
vent; the Enzymix force field;7 velocity-verlet Newtonian and
Langevin dynamics;8 free-energy perturbation (FEP);9 and Ben-
nett’s10 methods for the evaluation of free energies as well as the
ASEP/MD11,12 method for QM/MM—while implementation of
other algorithms continues rapidly. Below we detail how the
framework was created using the previously discussed ideas, how
it provides the basis for Adun itself, and how it enables new
functionality to be implemented. As a precursor to the future work
we will perform with Adun we present the results of some pre-
liminary simulations.

Adun Framework Design

Although frameworks are powerful tools they cannot be designed
from scratch without previous expertise in the problem domain (in
this case MD). Without this experience it is impossible to identify
the optimal factoring or to define how the resulting classes should
communicate. Therefore, the development of a framework is an
evolving process. It usually starts with the creation of a program in
the given domain. As subsequent programs are developed certain
trends become clear. These trends are coded in the first version of
the framework and the initial programs are refactored to conform
to it and become the basis of the component library. Newer
programs are then based on this framework and library. As time
passes, constant refactoring is applied as problems are encoun-

tered, thus improving the design and driving the framework to-
wards a “meta-stable” mature state. This was the process followed
to create the Adun Framework, and it was accelerated by the fact
that molecular dynamics is a very well-known problem domain.

Framework Structure

An overview of the fundamental structure of the Adun Framework
can be seen in Figures 3 and 4. It is defined by a set of abstract
classes (also called base classes) and the relationships between
them. An abstract class is a template for creating components. It
defines the interface (method names and return types) and respon-
sibilities each component based on it must conform to. A compo-
nent associates itself with an abstract class through inheritance.
Thus, abstract classes group-related components enabling a taxo-
nomic view of the component library as well as ensuring that all
their descendants are polymorphic.

The arrows in Figures 3 and 4 show which classes are related,
and the type of arrow indicates the type of relationship. The
relationships are grouped into three categories—association, ag-
gregation, and composition. Composition is the strongest relation-
ship—one class exclusively contains another and the presence of
the contained class is usually required in order for the container to
function, for example, AdForceField (container) and AdNon-
BondedCalculator. It also implies a shared life time, that is, if the
container is destroyed then so are the contained objects.

Aggregation also implies a container/contained relationship
and a shared life time. However, the presence of the contained
object may not be necessary for the container to function, and the
containment may not be exclusive. A standard array or list object
in any object-oriented language has this relationship with the

Figure 3. Fundamental structure of a molecular dynamics simulator in the Adun framework. The
italicized names denote that the classes are abstract. The prefix Ad- helps avoid namespace conflicts.

1650 Johnston, Fdez. Galván, and Villà-Freixa • Vol. 26, No. 15 • Journal of Computational Chemistry



elements it contains. Finally, in association there is no contain-
ment. There is one or two way communication, but if one is
destroyed the other is not affected, for example, AdForceField,
AdSystem, and AdSimulator.

Class Overview

The three core classes in the framework are listed in Table 1, along
with their responsibilities. The stereotype ��facade�� on AdSystem
indicates it is actually an interface for the System subsystem of
Adun (Fig. 4).

A subsystem is a self-contained set of functionality and is
typically made up of multiple components. However, because the
subsystem components will have differing interfaces the overall
interface can become very complex. To solve this problem we use
the facade pattern. One class (the facade class) contains the sub-
system classes and provides a unified interface to them, thus
combining multiple sources of information and functionality into
one.

In the case of Adun, AdSystem is the container for the sub-
system classes (see Table 2), which it manipulates to provide data
to AdForceField and AdSimulator. It not only provides a simpler
interface to the subsystem but also eliminates all coupling of the
other core classes to the exact subsystem composition making it
very easy to switch one system type for another. Components

based on AdSystem contain different varieties and amounts of the
subsystem classes and manipulate them in different ways. Because
there is no coupling between the exact composition of each com-
ponent and the rest of the framework objects we are free to vary,
combine, and manipulate the subsystem classes in any imaginable
way, which leads to great developmental flexibility.

Evolving Framework Example: AdForceField

The overall structure presented in Figures 3 and 4 was reached by
the application of the concepts discussed in the introduction, that
is, polymorphism, refactoring, patterns, etc., and the evolution of
the AdForceField class serves to illustrate and clarify this proce-
dure.

Initially, AdForceField was a pure abstract class. It contained
no functionality of any kind and simply acted as a template for
force field components. A number of concrete implementations
were made of this class as shown in Figure 5A. These corre-
sponded to the same force field function but with different com-
binations of methods for computing the nonbonded interactions
and applying boundary conditions.

Figure 4. The System object acts as a facade and container for the system subsection of the
framework.

Table 1. The Top Level Classes.

Class Responsibility

AdSystem The force field and otential evaluation algorithm
AdForceField The force field and potential evaluation algorithm
AdSimulator The integration algorithm

Table 2. The System Subsystem Classes.

Class Responsibility

AdDynamics coordinates, velocities, positions
AdBondedTopology object to handle bonded interactions
AdNonBondedTopology object to handle nonbonded interactions
AdState monitors the state of the system
AdSolventBox defines how the solvent is contained
AdMediator controls communication between all parts

of the system

The Adun Simulator 1651



However, the algorithm encapsulated by each of the classes
was generally the same, for example, the same bond, angle, and
torsion operations. Therefore, if any of these areas was changed in
one it had to be changed in them all. This not only makes changes
take longer but also acts as a source of hard to find bugs due to
“transcription” errors. This problem and its solution are addressed
by the template method pattern. It proposes that the common code
should be moved to an abstract class with empty “hook” methods
replacing the varying code. Using inheritance, subclasses then just
implement their own version of these hook methods (see Fig. 5B).

As development continued it became obvious that the hook
methods were encapsulating generic categories of algorithms. Be-
cause they were defined as part of a class these algorithms could
not be used outside of the class hierarchy. Each algorithm was also
coupled to the force field class it was defined in. This meant that
you could not change, for example, one nonbonded calculation
technique for another without changing the entire class. Most
importantly, every combination of an algorithm with another
meant another class had to be created. For example, each non-
bonded technique added means two classes have to be created,
with and without SCAAS. If there are four boundary conditions
and four nonbonded techniques 16 classes must be created. Adding
another base force field type, that is, CHARMM would double this
number.

These problems are addressed by the Strategy pattern. The
solution is to encapsulate each algorithm by its own base class and
then use delegation and dynamic binding to vary the algorithm
(Fig. 5C). Thus, we enable these algorithms to be reused else-
where, decouple different layers of functionality, make it much
easier to create new functionality, and drastically reduce the num-
ber of classes needed. Now we only need 4 (nonbonded tech-
niques) � 4 (boundary conditions) � 2 (force field) � 10 classes
to achieve the same effect as the 32 classes with Template Method.

Template Method vs. Strategy

Template Method and Strategy are closely related. Strategy is
more powerful but also more complex to implement. It requires the
language used to support dynamic typing and binding. In addition,
it is not always clear at the beginning how to encapsulate the
objects. Template Method is quicker and easier but lacks flexibil-
ity. It is often the case that Template Method is used first and then
it evolves to become a Strategy if necessary.

These two patterns are usually applied to the case of algo-
rithms. However, the ideas they introduce are cornerstones of
every framework. Template Method uses inheritance to extend
functionality, while the method embodied by Strategy is called
polymorphic composition. Another example of a polymorphic

Figure 5. AdForceField evolving from basic, to Template Method, to Strategy. In (A), the abstract class
contains no code, and hence all changes must be repeated many times. In (B), this problem is removed;
however, now algorithm reuse is a problem; the large hierarchies created by inheritance are hard to
maintain and class naming becomes a problem. In (C), we apply the “Strategy” pattern and achieve a very
flexible polymorphic composition.

1652 Johnston, Fdez. Galván, and Villà-Freixa • Vol. 26, No. 15 • Journal of Computational Chemistry



composition are the core objects of Figure 3. These issues are
discussed further in the development section.

Completing the Framework: Support Objects

The framework as presented so far is incomplete. All MD pro-
grams need to input and output information, allocate and manage
memory, get information on the processing environment, etc. In
addition, each object will require a number of external parameters
to function, for example, the time step, the number of steps, the
long-range interactions cutoff, if any. These various functions are

encapsulated by support objects, and their relationship with the
core objects is shown in Figure 6. AdEnvironment is the main
class. It contains all the information on the processing environment
as well as the configuration values for the program. Every class in
the framework (and, hence, all their descendants) contain a refer-
ence to AdEnvironment. AdEnvironment contains two other sup-
port classes, AdIOManager and AdMemoryManager, so they can
be accessed by any object that needs their services.

Building The Program

Up to now we have detailed the Adun framework that describes
any molecular dynamics application. By joining together compo-
nents based on the framework we can create an MD program as in
Figure 7. However, we do not want many separate applications but
one root application that can create them all. Therefore, we require
a way in which we can dynamically assemble the proper compo-
nents into an application based on the value of certain options
specified by the user. The AdFactory class is what allows us to do
this. Every class contains a reference to AdFactory. When it wants
to create an object based on the user values it calls the appropriate
AdFactory method, for example, createForceField, cre-
ateSystem, etc., which then instantiates and returns the correct
object based on the current environment. This technology is en-
abled by polymorphism and dynamic binding and would be im-
possible otherwise.

Figure 8 shows the final structure of the Adun program. The
AdCore class assembles and contains the top level objects that are
created using AdFactory and AdEnvironment. The actual manip-
ulation of the top-level objects is performed by an AdController
class, which is dynamically loaded based on the Environment
options. The controller classes are actually bundles, and are not
compiled into the main part of the program. They can be viewed

Figure 6. The support classes of the Adun Framework. All classes,
except Environment and Factory, implement the AdCreating interface
(The arrow to AdSystem was removed to enhance clarity. The core
classes can also access AdIOManager and AdMemoryManager and
utilize their services.)

Figure 7. A concrete molecular dynamics application in the Adun Framework.

The Adun Simulator 1653



as plugins or scripts and provide one of the most powerful ways in
which Adun can be developed.

Development

The techniques and methods of molecular simulation can be di-
vided into two distinct types. On one hand, we have low-level
algorithms associated with force calculation and application, nu-
merical simulation, boundary effects, nonbonded interactions, etc.
On the other, there are higher level simulation protocols such as
free-energy perturbation, LIE, PDLD, and replica-exchange–
based methods. Reflecting this division development of Adun
takes place on two different levels: extending the component
library to add functionality, and creating new controllers that
utilize existing components in different ways.

Components

The parts of the framework where development is concentrated are
called “hot spots,” and the majority of components in the compo-
nent library are associated with these areas. A hot spot can be one
class or encompass a group of classes. In the latter case, the classes
usually form a polymorphic composition. The Adun hot spots are
detailed in Table 3.

Hooks

For each hotspot in Adun, the framework defines where we can
add our code. Because we are “attaching” our code to these
locations they are called hooks, and how we “attach” it depends on
the type of hook, method or class. Method hooks are found in
single-class hotspots, while class hooks are related to polymorphic
compositions.

Method hooks are a generalization of the “Template Method”
pattern discussed previously (see earlier) to areas other than algo-
rithms. An abstract class leaves certain methods unimplemented
(the method hooks) and subclasses then fill in these “holes” with
different functionality. If a class has many method hooks an
inheritance tree usually grows up (as with AdForceField).

Class hooks, on the other hand, are related to the Strategy
pattern. Here we create a new subclass of a class in a polymorphic
composition, for example, if we wished to add a new method for
computing the nonbonded interactions we would create a new
AdNonBondedCalculator subclass. Our algorithm or method can
be used by simply placing an instance of the new class in the
correct place in the composition.

Controllers

Developing controllers differs from developing components be-
cause the emphasis is on creating new simulation protocols rather

Figure 8. The structure of Adun. Currently, Adun reads in topology and coordinate information from files
prepared from a script. In the near future this information will be sent directly to the Core from the Adun
UserLand as data objects.

1654 Johnston, Fdez. Galván, and Villà-Freixa • Vol. 26, No. 15 • Journal of Computational Chemistry



than new functionality. Controller classes manipulate components
by changing parameters, polymorphic compositions, etc. By sep-
arating the functionality of the objects from how they are actually
used we attain a flexible and easy way for developers to implement
new behavior.

Controller classes are loaded from bundles, and as such are not
a directly compiled part of the program. A controller bundle can
just contain the controller class itself or can also define other
classes, outside of the framework, which are loaded with it at run
time. These classes can then be used to perform operations not
available in the Adun framework without affecting it.

Thus, a controller can range from a few simple lines to a
number of large complex objects. External objects defined in this
way can then be added to the component library if they prove
useful. For example, new AdForceField or AdSystem components
can be defined in controller bundles for testing, and the controller
can replace the initial component created at startup with the new
one.

Controllers provide a much cleaner and clearer way to perform
various protocols. They keep such code separate and prevent code
entanglement. Because controllers are compiled separately from
the core program it does not have to be recompiled when they are
changed, and useful controllers can be distributed and used with
any installed Adun.

Future Developments

Adun is an evolving application, and features are constantly being
added and improved. These features can be roughly divided into
two categories: (a) simulation algorithms and protocols, and (b)
higher level interface and deployment functionality. On the simu-
lation side we are currently implementing a local reaction field13

treatment for the long-range electrostatic interactions, the LIE
protocol,14,15 configuration optimization methods, as well as new
force field implementations. The later is aided greatly by our
development of an XML-based template for describing force fields
coupled with a flat file to XML conversion tool. This will allow
rapid implementation of all current force fields.

On the other hand, we are improving our basic interface system
for the program (Adun UserLand). This part of the program
contains the topology generation code as well as a simple user
interface, allowing creation, saving, and loading of Adun topology

and option files and the ability to load statistical analysis plugins.
By keeping the core simulation code and the UserLand separate
and utilizing the built-in distributed objects features of the Cocoa/
GNUStep libraries we can enable such novel technologies as
dynamic and remote simulation management as well as intrinsic
grid computing facilities. The possibility of ready-to-go grid pro-
vides an elegant solution to the many so-called embarrassingly
parallel problems (problems that can be easily split into a bunch of
several independent threads) that are common in the molecular
dynamics domain.

Examples

As a short example of Adun and a precursor to future work we
present results for the solvation energy of a sodium ion and
compare the performance of the standard free energy perturbation9

technique and the Bennett acceptance ratio10,16 method in the
equilibrium case.

System

The system studied involves a sodium ion surrounded by a sphere
of flexible water molecules simulated by the SCAAS model and
the ENZYMIX force field. The radius of the water sphere was 12
angstroms, and the electrostatic cutoff was 26, ensuring all inter-
actions were treated explicitly. Two different values for the num-
ber of mapping steps (10 and 20) were used to see the effect of
increasing the overlap between each perturbation surface. The
duration of each mapping step was also varied so we could
examine the effect of increased sampling. The durations were 100
fs, 1 ps, and 5 ps, and the corresponding number of samples taken
was 10, 200, and 1000, respectively. Thus, the shortest total
simulation was 1 ps and the longest 200 ps. The time step was 1
fs and the temperature of the system was kept at 300 K using a
Berendsen thermostat.

Free Energy Perturbation

FEP estimates free energy differences by exponentially averaging
potential energy differences between a reference state sampled at
equilibrium and a target state.9

Table 3. Some Adun Hot Spots and the Types of Hooks Associated With Them.

HotSpot Variability Hook types

AdSimulator Integration, temperature control
methods

Method

AdNonBondedCalculator Nonbonded calculation techniques Class
AdBoundaryImplementor Boundary conditions Class
AdSystem Systems Class
AdNonBondedTopology Nonbonded interactions

calculation
Class/method

AdState Controlling state Class
AdSolventBox Solvent geometry Class

The Adun Simulator 1655



GB � GA � �RT log�e���H/RT��A (1)

In the case where the potential energy surfaces of the initial and
target state do not have significant overlap we can break the
calculation into windows by defining a Hamiltonian H(�)

H��� � �HB � �1 � �� HA (2)

� can vary from 0–1. When � � 0, H(�) � HA and when � �
1, H(�) � HB. Equation (1) then becomes

GB � GA � �
�

� RT log�e���H	/RT��� (3)

where H	 � H��d� � H�. The total free energy difference is just
the sum of the free energy differences between the windows
defined by �.

Bennett Acceptance Ratio

Taking infinitely small values for d� �G should be the same if we
go from 0–1 or from 1–0. However, in actual calculations this is
not the case, and it is often found that it is not, that is, the FEP
estimator exhibits hysteresis. One common way to deal with this is
to take the average of the forward and backward perturbation;
however, the validity of this procedure is doubtful. Also, the
variance of the FEP estimator can be quite large, leading to poor
precision.17,18 An alternative method for obtaining �G from two
states sampled at equilibrium was proposed by Bennett.10,16 By
utilizing the information contained in both the forward and reverse
distributions of the potential energy difference he showed that a
significantly better estimate could be obtained than by just using
measurements in one direction. He first showed that, for an arbi-
trary function f,

e���G �
�f��U��F

�f��U� � e���U�R
(4)

where � �F is the average over the forward direction and � �R

the average over the reverse. He then minimized the statistical
variance with respect to f(�U) to find that

f��U� � �1 �
nf

nr
e��U��G���1

(5)

Here, nf and nr are the number of values obtained for the forward
and reverse directions, respectively. Although this is an implicit
function of �G the result can easily be found by iterative methods,
for example Newton–Rhapson. With the recent discovery of the
nonequilibrium work relation (Jarzynski equality19)

e���G � �e��W� (6)

where W is the nonequilibrium work in bringing the system from
one state to another, Crooks showed20 that eq. (4) can be trivially
generalized to the nonequilibrium case by replacing �U with W.
Pande and Shirts21 have recently shown that results obtained from

the Bennett’s Method can be seen as the most probable value of
�G given the values of �U obtained. They also showed that the
variance of this estimate is given by,

1

�2ntot
��� 1

2 � 2 cosh(�(M � Wi � �F))
���1

� �ntot

nf
�

ntot

nr
�	

(7)

Results and Discussion

Table 2 shows the results obtained for the adiabatic charging of a
sodium ion using the standard FEP approach and Bennett’s
method. Both FEP and Bennett’s method calculate the free energy
from the same data, that is, from sets of potential differences
between a reference state at equilibrium and a target state. Some
confusion could arise here because this method of obtaining data is
often synonymous with FEP. Here, FEP refers solely to the expo-
nential averaging of such data from either the forward or reverse
directions, while Bennett’s method incorporates the data from both
directions in eq. (4).

As expected, both the acceptance ratio method and the FEP
average yield similar results for the free energy of the charging
process, even for calculations with very limited sampling. Note,
however, that although the (in)accuracy of the results for the
different MD experiments is quite similar, the precision is signif-
icantly improved by the application of the Bennett method (vary-
ing from a two- to fivefold decrease in the standard deviation).

On the other hand, a high degree of hysteresis is observed for
the FEP estimator. This is a well-known problem,22 and it can be
negated by increasing the number of mapping steps between the
initial and final states. Table 4 reflects this—the hysteresis drops
from around 13 
 4 kcal � mol�1 for 10 steps to 7 
 2 kcal � mol�1

for 20 steps. The decrease is a direct result of the greater overlap
of adjacent potential energy surfaces caused by increasing the
number of steps. As the amount of overlap is increased the differ-
ence between the configurations generated on the � and � � d�
surfaces become smaller. Therefore, the difference between eval-
uating the potential on the configurations from the � or � � d�
surfaces also becomes smaller and hysteresis decreases.

Because evaluating the actual value of the free energy for
adiabatic charging of the sodium ion is not the main aim of the
current article, we emphasize here that the time for implementation
of these new algorithms represented an extremely small fraction of
the time spent designing the Adun framework. A more striking
example of how to implement a novel method into the Adun
framework is given in the Appendix, where mean field QM/MM
method ASEP/MD is implemented into Adun.

Conclusions

The explosion in the use of computational methods in science has
brought into sharp focus the defects in the prevalent algorithm-
centric development methodology, and the increasing need for
advanced applications cannot be met by this programming para-
digm. Computational scientists need to take advantage of and

1656 Johnston, Fdez. Galván, and Villà-Freixa • Vol. 26, No. 15 • Journal of Computational Chemistry



implement many of the ideas that have accompanied and driven
the explosion in commercial computer software in the past decade.
We have explained briefly these ideas and how they aid the
development process and shown how we applied them to the
design of a new Molecular Dynamics simulator, Adun.

Adun is the result of our ambition to provide a highly scalable,
easy to develop open-source platform for computer simulations
that also allows rapid implementation of new functionality and
protocols. This stands in contrast to many current simulation
packages that cannot keep pace with the rate of change in the state
of the art, a situation that has lead to a proliferation of lab-centric
MD programs that implement a few related protocols that subse-
quently remain unknown or unused outside of a small user core.

We have shown the use of the program in a simple free-energy
perturbation example as an indication of the future work we will
carry out with Adun. Other features are also currently available in
the code, including the possibility of using the Langevin dipoles
(LD) model for solvation or the recently implemented averaged
solvent electrostatic potential from the molecular dynamics
(ASEP/MD) method. The design philosophy embodied by Adun
also allows us to explore novel ideas such as intrinsic grid com-
puting, which will offer scientists new perspectives for computer
simulations of biomolecules.

Appendix A: Implementation of ASEP/MD into
Adun

This section includes the protocol followed to perform a complex
new implementation into the Adun structure. The process will be
exemplified with the implementation of the averaged solvent elec-
trostatic potential (ASEP/MD) method,12 a hybrid quantum me-
chanics molecular mechanics (QM/MM) methodology based on
the use of the mean field approximation.23

The basic structure of the ASEP/MD method involves perform-
ing a molecular dynamics simulation where part of the system (the
solute) is kept rigid, analyzing the obtained configurations to build
an average solvent model, carrying out a quantum calculation with
the solute surrounded by this solvent model, updating the force
field parameters (the solute’s atomic charges) using the results of
this calculation, and performing a new molecular dynamics simu-
lation.

The first step for the implementation of ASEP/MD into Adun
was identifying the places where the new functionality was to be
added. Shortly, these are the main elements to consider (see ref. 12
for additional details on the method):

● A main controller to manage the ASEP/MD protocol.
● A set of methods for performing the quantum calculations with

a given external program.
● A grid of points over the space occupied by the solute, as well

as methods to calculate the electrostatic potential on these
points.

● The solvent model, represented by two sets of point charges:
inner charges and outer charges.

Details of the Implementation

The controller is the core of the process, and little more would be
needed if all the functionality was already included in the standard
Adun program. However, some of these needs are rather specific to
the ASEP/MD method and have to be provided here as an addition.
Other features, like the interfacing with quantum calculation pro-
grams, may be useful in general, and could be included in the main
Adun structure in further developments.

The following paragraphs give some more details about the
different tasks and methods supplied by this implementation.

Controller

The new controller, called AsepMD, is in charge of organizing the
molecular dynamics simulations and the quantum calculations as
needed, and of the interface between them. Its main feature is a
loop to launch successive MD simulations and quantum calcula-
tions until the convergence criteria are satisfied or a maximum
number of iterations is reached. It also reads the additional input
file and writes the output.

Quantum Handler

For the quantum calculations we rely on the use of external
programs. The choice of the specific quantum program to use is, in
principle, open to the user, but the needed methods were developed
for Gaussian 98.24 Thus, a class named GaussianHandler was
written, containing in particular methods to write an input file

Table 4. Results of Applying FEP and Bennett’s Methods to the Analysis of Sampled
Configurations during an Adiabatic Charging Process of a Sodium Ion in Water.

Mappings Steps Samples
FEP

forward
FEP

reverse
FEP

average Bennett

10 100 10 �87 
 2 100 
 2 �93 
 4 �95 
 2
10 1000 200 �85 
 2 101 
 2 �93 
 4 �93.1 
 0.8
10 5000 1000 �87 
 2 100 
 2 �93 
 2 �93.8 
 0.5
20 100 10 �89 
 2 97 
 1 �93 
 2 �93 
 1
20 1000 200 �90 
 1 97 
 1 �94 
 2 �93.5 
 0.6
20 5000 1000 �90 
 1 97 
 1 �94 
 2 �93.8 
 0.4

The Adun Simulator 1657



(with solute and model solvent specification), launch the quantum
program, and read the output files (energies, atomic charges, etc.).

If a different quantum program were to be used, another class
providing these same methods (although with different implemen-
tations) would have to be written. This keeps the program structure
and interface constant while the needed changes are confined to a
small portion of code.

Solute Grid

To build the solvent model, it is needed to define a grid of points
to sample the electrostatic potential on the solute. This grid can be
considered as a “phantom image” of the solute, and should even-
tually move with it. A new class, named SoluteGrid, was created
for this.

Additionally, the methods for calculating the nonbonded inter-
actions had to be slightly modified to allow the obtention of the
solvent electrostatic potential on each of the grid points individu-
ally. A new AdNonBondedCalculator subclass, named GridNon-
BondedCalculator, was thus created.

Solvent Model

For the quantum calculations, the solvent influence on the solute is
represented by two sets of point charges, whose locations and
values are calculated from the simulation results. To create and
manage this solvent model, a new System class was written, called
AsepSystem. It is a subclass of ExplicitSystem, so that it inherits
all definitions and methods to deal with the MD solute–solvent
system, but it has also added methods for building and modifying
the solvent model.

In particular, this class contains methods to gather solvent
configurations, calculate the average inner charges, and fit the
outer charges’ values. In this way, both the solute structure and the
solvent model are easily available for the quantum handler (see
above).

Using ASEP/MD in Adun

From the usage point of view, running an ASEP/MD calculation
with Adun is just as easy as a standard simulation, but some details
must be kept in mind. First, ASEP/MD is designed to work with an
explicit solvent and Newtonian dynamics simulation, and with
fixed (rigid) solute, so the appropriate keywords should be used in
the main Adun configuration file. Second, AsepMD.ad should be
specified as the controller of choice. Additionally, another specific
input file (asepmd.config) is needed for setting the ASEP/MD
parameters; an example is shown in Figure 9.

For the meaning of the different parameters, the reader is
referred to the main ASEP/MD article12 and to the provided
README file.

Modifying ASEP/MD

The current ASEP/MD implementation into Adun is still under
further development, although the main core of the implementation
was performed in a very short time, including the time spent in
familiarizing with the programming language used. A user might

want to extend its capabilities, modify algorithms or change the
controller’s behavior. Some of the possible changes are outlined
below.

● Adding interfaces to other QM packages. In principle, it is
possible to use any QM program capable of performing calcu-
lations in the presence of external point charges. For each
program a QMHandler class should be provided, and Gaussian-
Handler can be used as a reference. The needed methods are
those for writing the input, running the program, and reading the
output.

● Optimizing geometries. At the moment, there is no geometry
optimization in this ASEP/MD implementation, but some handles
are provided for that and the link to other optimization methods
already implemented into Adun is straightforward. To add geom-
etry optimization, the NullOptimizer (which does a single point
calculation) should be replaced by another class that applies the
desired optimization algorithm to the solute geometry.

● Defining a different solvent model. The solvent model defined
by the ASEP/MD method includes two sets of charges whose
positions and values are calculated in a particular way. To
explore other possibilities of representing the solvent as ob-
tained from the molecular dynamics, the appropriate methods in
AsepSystem could be modified or a new System class could be
written. As long as the solvent is still represented by point
charges, no additional changes are needed.

References

1. Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J. Design Patterns:
Elements of Reusable Object Oriented Software; Addison–Wesley
Professional: Reading, MA, 1995.

2. Beck, K. Extreme Programming Explained: Embrace Change; Add-
ison–Wesley: Reading, MA, 1999.

3. Fowler, M. Refactoring: Improving the Design of Existing Code;
Addison–Wesley: Reading, MA, 1999.

4. Roberts, D.; Johnson, R. In Pattern Languages For Program Design 3;

Figure 9. Sample input file for ASEP/MD with Adun.

1658 Johnston, Fdez. Galván, and Villà-Freixa • Vol. 26, No. 15 • Journal of Computational Chemistry



Riehle, D.; Buschmann, F.; Martin, R. C., Eds.; Addison–Wesley:
Reading, MA, 1997.

5. King, G.; Warshel, A. J Chem Phys 1989, 91, 3647.
6. Warshel, A. Computer Modeling of Chemical Reactions in Enzymes

and Solutions; John Wiley & Sons: New York, 1991.
7. Lee, F. S.; Chu, Z. T.; Warshel, A. J Comput Chem 1993, 14, 161.
8. Schlick, T. Molecular Modeling and Simulation; Springer–Verlag:

New York, 2002.
9. Torrie, G. M.; Valleau, J. P. J Comp Phys 1977, 23, 187.

10. Bennett, C. H. J Comput Phys 1976, 22, 245.
11. Sánchez, M. L.; Aguilar, M. A.; Olivares del Valle, F. J. J Comput

Chem 1997, 18, 313.
12. Fdez Galván, I.; Sánchez, M. L.; Martı́n, M. E.; Olivares del Valle,

F. J.; Aguilar, M. A. Comp Phys Commun 2003, 155, 244.
13. Lee, F. S.; Warshel, A. J Chem Phys 1992, 97, 3100.
14. Qvist, J.; Medina, C.; Samuelsson, J.-E. Protein Eng 1994, 7, 385.
15. Sham, Y. Y.; Chu, Z. T.; Tao, H.; Warshel, A. Proteins: Struct Funct

Genet 2000, 39, 393.
16. Bennett, C. H. In Algorithms for Chemical Computations; Christof-

ferson, R. E., Ed.; American Chemical Society: Washington, DC,
1977, p. 63.

17. Lu, N.; Singh, J. K.; Kofte, D. A. J Chem Phys 2003, 118, 2977.
18. Shirts, M. R.; Pande, V. S. J Chem Phys 2005, 122.
19. Jarzynski, C. Phys Rev Lett 1997, 78, 2690.
20. Crooks, G. E. Phys Rev E 2000, 61, 2361.
21. Shirts, M. R.; Blair, E.; Hooker, G.; Pande, V. S. Phys Rev Lett 2003,

91.
22. Kollman, P. Chem Rev 1993, 93, 2395.
23. Tomasi, J.; Persico, M. Chem Rev 1994, 94, 2027.
24. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,

M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.;
Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels,
A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.;
Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clif-
ford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Moro-
kuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman,
J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko,
A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.;
Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez,
C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong,
M. W.; Andres, J. L.; Head-Gordon, M.; Replogle E. S.; Pople, J. A.
Gaussian 98, Revision A.7; Gaussian, Inc.: Pittsburgh, PA, 1998.

The Adun Simulator 1659


