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Abstract: The nudged elastic band (NEB) method is a successful optimization method for obtaining minimum energy
reaction paths if only the initial and final structures are known. However, the original implementation of the method had
some limitations, which has meant that there has been considerable interest in proposing alternative NEB formulations,
which show improved convergence behavior. In this work, we present two modifications to the standard NEB procedure.
The first involves the use of a second-order quasi-Newton optimization technique applied separately to each of the images
that form the path. The second consists of the use of an interpolating spline to represent the path. This ensures that the
images along the path are evenly spaced and means that the arbitrary spring forces employed in the standard NEB method
are no longer necessary. We tested these modifications on a set of small, but relatively complex, chemical systems and
found that the computation time was reduced by as much as 90% compared with the standard method.
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Introduction

One of the most important problems in current computational
chemistry is the identification of the minimum energy path (MEP)
for a given process. The MEP is often a good description of the
optimum mechanism by which a stable conformation of atoms is
converted into another one. The structure with maximum energy
along the MEP approximates the transition state for the process
and the energy profile itself permits estimation of the transition rates.

For the determination of reaction paths or saddle points a variety
of methods have been proposed,1 ranging from methods that some-
how follow the shape of the potential energy surface, either from
minima to saddle points or vice versa,2–4 to those that represent the
whole path through a set of images (or replicas or states) and try to
optimize them in a concerted fashion.5–8 An efficient and success-
ful method of this last type is the one known as the Nudged Elastic
Band (NEB) algorithm, developed by Jónsson et al.9 Like others in
its category, the method starts by defining a number of images of the
system between the initial and final states. If the system has N free
particles, each image behaves as a point in a 3N-dimensional space.
Spring interactions are then added between adjacent images to form
an “elastic band”. The optimization of the band, which converges
to the MEP, involves a minimization of the forces acting on each
image due to both the springs and the system’s potential energy.
One of the advantages of the NEB method, and others like it, is that
knowledge of the location and structure of the saddle point are not
needed beforehand.

An essential feature of the NEB method, and one of the reasons
for its success, is that the spring forces are projected onto the tangents
to the path at each image whereas the image forces arising from the
potential energy function are projected onto the hyperplanes that
are perpendicular to the path. Although this projection improves
the behavior of the NEB algorithm when compared with similar
methods, it has the drawback that it makes it difficult to define a
target function that defines the path and that can be optimized with
second-order methods.

In this work, we present two improvements to the NEB proce-
dure that increase its performance and reduce the computational
time needed to locate paths. The first modification involves using a
second-order L-BFGS method for the optimization of the individual
images along the path whereas the second concerns the replacement
of the spring forces between images with a spline description of the
path. This allows the redistribution of images at any point in the
optimization process without the introduction of external forces.

The rest of the paper is organized as follows. “The NEB
Method” section presents a quick overview of the NEB method,
“Modifications to the Method” section discusses two possible
improvements and proposes a modified method, “Tests and Results”
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section details the test cases employed to evaluate the performance
of the modifications and the results obtained, and the last section
concludes.

The NEB Method

In the original NEB method, a path between two structures is repre-
sented as an ordered set of intermediate structures called “images.”
Two forces are defined on each image—a parallel force, F‖, and a
perpendicular force, F⊥. The perpendicular force comes from the
internal or intrinsic force felt by the system due to its potential energy
function and is:

Fint
i = −gi

F⊥
i = Fint

i − (
Fint

i · t̂i
)
t̂i, (1)

where gi is the potential energy gradient calculated for image i and
t̂i is the unit vector tangent to the path at the image (see below). The
parallel force is an external force introduced to keep the different
images uniformly spaced. It arises from a series of harmonic springs
that are placed between adjacent images and takes the form:

Fext
i = ki+1(ri+1 − ri) + ki(ri−1 − ri)

F‖
i = (

Fext
i · t̂i

)
t̂i, (2)

where ki is the force constant between images i − 1 and i and ri

is the 3N-dimensional vector of Cartesian coordinates defining the
structure of image i. Finally, the total force on each image is just the
sum of the two components:

Fi = F⊥
i + F‖

i , (3)

and the goal of the method is to make the force on each image vanish.
Since the path is defined only by the coordinates of its image

structures, ri, the definition of a tangent vector at any point of the
path is not trivial. In the original NEB method, the tangent at image
i was defined as the vector joining images i − 1 and i + 1, so that:

ti = ri+1 − ri−1 t̂i = ti

|ti| . (4)

The projection of the forces in eqs. (1) and (2) makes it prob-
lematic to use second-order algorithms for the minimization of the
forces. In the original NEB articles, a quenched molecular dynam-
ics scheme was employed in which each image moved according to
the total force acting on it. However, there was no memory of past
moves because the velocities were set to zero at every step of the
minimization.

Several improvements over the basic NEB method have been
proposed. Among these are an alternative definition of the tangent
vector, which employs the vector joining image i and either image
i−1 or i+1, depending upon which one has the higher energy10; the
“climbing image” variant for locating saddle points11; superlinear

algorithms for minimization of the forces by using quasi-Newton
methods12, 13; and a temperature dependent implementation which
takes into account the local curvature of the path.14

Modifications to the Method

The modifications to the original NEB algorithm proposed in this
work are aimed at providing a faster convergence of the optimization
procedure and at making the method more robust by eliminating the
arbitrary spring forces of eq. (2).

In an earlier paper,15 we showed that convergence of NEB cal-
culations employing a quenched molecular dynamics scheme could
be improved by moving only one of the path images at each opti-
mization step. Here we extend this previous scheme by switching
to a more efficient second-order L-BFGS16, 17 optimization method.
In detail, this entails the following. At any NEB optimization step,
the image i with the largest total force norm, ‖Fi‖, is identified, and
a series of “mini-steps” is applied to it to reduce the force. These
mini-steps are calculated with the L-BFGS method, which requires
only the gradients and builds up an approximate Hessian during the
optimization. The number of mini-steps is variable and they termi-
nate when the force norm is reduced sufficiently (typically 0.1 times
the initial ‖Fi‖) or when the maximum predefined number of mini-
steps is reached (typically 20). This process is repeated in the next
NEB step by reidentifying the image with the largest force norm
and then applying the mini-step procedure. The “memory” of the
L-BFGS algorithm is normally cleared between its optimizations
because the approximate Hessians that it builds are not transfer-
able between images. It should be noted that these optimizations
are always minimizations of the total force Fi [eq. (3)], so that even
in regions with negative curvature, such as close to saddle points,
the optimizations should lead to points where the second deriva-
tive matrices are positive definite. The BFGS update method, which
ensures positive definiteness, is thereby apt for this task.

Our second modification eliminates the spring forces by rep-
resenting the path with a parametric interpolating spline. This is
similar to the “string method” proposed by E et al.5, 18

Consider a set of n+1 images, numbered successively from 0 to
n, and represented by their 3N-dimensional coordinate vectors, ri.
A 3N-dimensional interpolating spline ϕ(t) (a cubic spline in our
case) can be generated from these images such that t is a continuous
variable, whose value ranges from 0 to n, and such that ϕ(i) = ri

for images i. The distance between adjacent images i and i + 1 is
calculated as the arc length along the spline and is expressed by the
integral:

d(i) =
∫ i+1

i

∣∣∣∣dϕ(t)

dt

∣∣∣∣ dt. (5)

The total length of the path is D = ∑
d(i). If the images are to

be equally spaced, they have to be placed at different points ti along
the path, such that s(ti), the length of the path from the starting point
up to ti, is:

s(ti) =
∫ ti

0

∣∣∣∣dϕ(t)

dt

∣∣∣∣ dt = Di

n
, (6)
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It is straightforward to solve this equation numerically and obtain the
ti values. This gives, in turn, a new set of coordinates for the images
in the original path, r′

i = ϕ(ti), which are now evenly spaced. As
shown by Wang et al.,19 a new interpolating spline ϕ′(t) can be
obtained from these points, which has the property that it follows
closely the initial spline and it is approximately parametrized by arc
length, which means that the length of the spline up to the point
defined by t, s′(t), is proportional to t itself. Since the images are
defined by a regular succession of values of t ({0, 1, . . . , n}), the
corresponding values of s′(t) will be regular as well, and the images
will be evenly spaced in the new path ϕ′(t).

The repositioning of the images and reparametrization of the
spline could be performed at every step of the NEB optimization,
thereby ensuring that the images are always evenly spaced. However,
we found that it is sufficient (and computationally more efficient) to
apply the procedure only when the spacing of the images becomes
significantly distorted.

The tangent vector for any point of the path can be also be deter-
mined from the interpolating spline. In principle, it is possible to
use this tangent vector for the projection of eq. (1) as in the “string
method” of E et al.5 In our tests, though, we found that the use
of this tangent led to instabilities in the optimization whereas the
improved tangent proposed by Henkelman and Jónsson10 provided
much more robust behavior.

Overall, the scheme of our modified NEB method is as follows

1. From the structures of reactants, r0, and products, rn, an initial
path is defined as a set of n − 1 intermediate structures, ri. This
is often done by straightforward linear interpolation between the
end-point structures.

2. An interpolating spline ϕ(t) is calculated such that ϕ(i) = ri.
We employ a piecewise cubic spline for ϕ(i) with the conditions
of continuity and differentiability at the image points (t = i) and
vanishing curvature at the endpoints (t = 0, n).

3. The gradient, tangent vector and perpendicular force, F⊥
i , are

obtained for each intermediate image.
4. The image with the largest force is identified and its structure is

altered in order to minimize this force. The L-BFGS algorithm is
used for this and is applied until the force norm is reduced below
a certain threshold, relative to the initial value, or until a given
number of iterations is reached.

5. A new interpolating spline is obtained with the new structure of
the previous step and the lengths of the spline sections between
each pair of images i and i + 1 are calculated. To decide whether
the images need to be redistributed, we monitor the ratio of the
largest to the smallest inter-image distances along the path. If this
is above a certain threshold (typically 1.5), the images are redis-
tributed and a new spline is calculated that will be approximately
arc-length parametrized.

6. The gradient, tangent and force are recalculated for the images
that have moved or whose tangent definition has changed.

7. Step 4 is repeated until the convergence criteria for the optimiza-
tion are satisfied. Typically this requires that the value of the
largest RMS force for an image falls below a specified threshold
value.

As an aside, we note that each image structure is represented by
a 3N-dimensional vector of Cartesian coordinates. In many cases

of interest, though (including all of those presented in the next
section), this set is redundant as it includes degrees of freedom for
the global rotational and translational motions for the system. These
are straightforward to eliminate using standard techniques (see, for
example, chapter 8 of ref. 20) with minimal changes to the above
scheme.

Tests and Results

The above modifications to NEB were implemented in the Dynamo
program20 which is a Fortran 90/95 library designed for performing
simulations of biomolecular systems with hybrid QM/MM poten-
tials. With this program we tested the performance of the NEB
implementation described in our previous work15 and the same
method with the improvements proposed here. For convenience we
term these methods o-NEB (original NEB) and s-NEB (spline NEB),
respectively.

Tests were performed on the following systems:

Cyclohexane

The interconversion between the chair and twist-boat conformations
of cyclohexane was studied with a simple MM model (the OPLS-
AA21 force field).

Blocked Alanine

The interconversion between the different conformations of blocked
alanine (bALA) was studied with the OPLS-AA force field. We
considered the α, C5, Cax

7 and Ceq
7 conformations and the 6 possible

transition paths between them. bALA, also known as the alanine
dipeptide, has been extensively studied,22, 23 since it is a simple
system but with enough complexity to show several minima and
reaction paths.

1,2-Difluoroethane

The complete 360◦ rotation about the C C bond in 1,2-
difluoroethane was studied with the AM1 semiempirical QM
method.24 The initial path was built taking the anti and two gauche
rotamers as intermediates.

Triazene

The 1,3 proton shift in triazene (N3H3) has been studied in solution
with QM/MM methods.25 Here we studied the bimolecular reaction
with an intervening water molecule in vacuum using the AM1 QM
Hamiltonian.

Triptycyl[4]helicene

This and similar compounds have been studied by Kelly et al.26 as
prototypes of molecular motors. The rotation about the triptycene–
[4]helicene bond was again studied using the AM1 method.

It should be noted that the aim of these tests was to compare the
efficiencies of the s-NEB and o-NEB algorithms and not to deter-
mine quantitative results for reaction paths or activation energies. If
this were the case, the calculations would have to be repeated with
higher-level QM potentials.
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Table 1. Number of Gradient Evaluations Needed to Obtain Converged
Paths for the Test Systems.

Gradient evaluations

System o-NEB s-NEB Reduction (%)

Cyclohexane 3,672 1,638 55.4
bALA (Ceq

7 → C5) 44,156 6,035 86.3
bALA (Ceq

7 → Cax
7 ) 108,972 10,906 90.0

bALA (Ceq
7 → α) 83,585 9,783 88.3

bALA (C5 → Cax
7 ) 114,294 12,599 89.0

bALA (C5 → α) 46,420 6,924 85.1
bALA (Cax

7 → α) 32,599 5,795 82.2
1,2-Difluoroethane 2,276 1,178 48.2
Triazene 7,295 2,852 60.9
Triptycyl[4]helicene 149,625 11,108 92.6

o-NEB: the NEB method from ref. 15; s-NEB: the modified algorithm
proposed in this work.

The initial paths for all the test cases were created with 21
images by linearly interpolating 19 structures between the initial
and final states. The exception was the path for the rotation barrier
in 1,2-difluoroethane, which was created by joining three sub-paths
linearly interpolated between the three different rotamers (31 images
in total). The NEB calculations were run until the value of the RMS
force on every image fell below 0.02 kJ mol−1 Å−1. For the o-NEB
calculations a spring force constant of ki = 500 kJ mol−1 Å−2 was
used.

Table 1 shows the number of gradient evaluations needed in each
case to reach convergence. In all the systems the final paths obtained
with both o-NEB and s-NEB are virtually identical, which shows
that the modifications proposed here do not change the behavior
of the method in this respect. It can be observed that the number
of gradient evaluations for every system is significantly reduced,
by around 50% for the smaller systems but in excess of 90% for
the larger and more complicated cases. As gradient evaluation is
the most expensive part of the calculation and the time required to
manipulate the splines is comparatively small, this means that the
s-NEB calculations are up to ten times faster than those with the
o-NEB method.

As examples, we show in Figure 1 the energy profiles obtained
for the transitions calculated for the bALA system. The NEB method
produces smooth paths for all cases. It can be seen, for instance,
that the transformation Ceq

7 → C5 → α (blue in the figure) has
an almost minimal activation energy (the highest transition state
energy is hardly above that of the α conformation). However, when
the direct Ceq

7 → α path (red in the figure) is calculated, a higher
activation energy is found. When examined, the paths are found to
be clearly distinct, as, for example, the rotation about the Cα C
bond is made in different directions. For the direct transformation,
there is a rotation of −135.5◦ of the CβCαCO dihedral, whereas the
transformation through C5 has a rotation of 224.5◦ (87◦ up to the
C5 conformation).

This serves to illustrate a feature common to NEB and most other
path optimization methods: they can only provide “local” optimum
paths, the results being dependent on the initial guess when starting
the optimization. In this case, the initial guesses were linear interpo-
lations between the initial and final structures, which are obviously

Figure 1. Energy profiles for the conversions between the four different
conformers of blocked alanine obtained with the s-NEB procedure. ξ is
the normalized path length: ξ = 0, reactants; ξ = 1, products. The
energies of the four conformers are marked on the right. In color, the
paths mentioned in the text.

not the same for the transformations just discussed, and this leads
to different paths across different regions of the potential energy
surface. Thus, optimized paths should be sought from as many pairs
of different initial and final structures as possible.

A further example is shown in Figure 2, where the obtained
energy profile for the triptycyl[4]helicene rotation is displayed.
Kelly et al.26 have reported a discontinuous energy profile when
considering a distinguished reaction coordinate for the rotation.
With the present method, however, no reaction coordinate is defined
a priori and a continuous profile is obtained. This energy profile is
basically the same as that presented in ref. 14, showing that the
modifications proposed in this work do not change the results given
by NEB, but rather its efficiency.

We also tested the quality of the saddle point structures that
could be obtained from the spline interpolation. To do this, we gen-
erated a cubic interpolation of the energy profile10 for each path
and estimated the position of the saddle point as the point ts with

Figure 2. Energy profile for a 120◦ rotation around the central C–C
bond in triptycyl[4]helicene obtained with the s-NEB procedure. ξ is
the normalized path length: ξ = 0, reactant; ξ = 1, product.
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Table 2. Quality of Two Different Estimations for the Saddle Point.

Closest image Interpolated

System |�E| RMS |�E| RMS

Cyclohexane 0.0984 0.03105 0.0004 0.02448
bALA (Ceq

7 → C5) 0.0167 0.03287 0.0023 0.01454
bALA (Ceq

7 → Cax
7 ) 0.0906 0.03570 0.0027 0.01681

bALA (Ceq
7 → α) 0.1382 0.05228 0.0046 0.01794

bALA (C5 → Cax
7 ) 0.0003 0.01107 0.0015 0.00939

bALA (C5 → α) 0.0121 0.02873 0.0031 0.01694
bALA (Cax

7 → α) 0.0227 0.02311 0.0014 0.00831
1,2-Difluoroethane 0.0823 0.04012 0.0000 0.00029
Triazene 0.2575 0.00841 0.0226 0.00343
Triptycyl[4]helicene 0.7725 0.19167 6.5291 0.13729

The energy difference, |�E|, and the RMS coordinate deviation in the struc-
ture with respect to the optimized saddle point are given for the image with the
highest energy in the path and for the approximate saddle point obtained by
interpolation. Energy difference is measured and in kJ mol−1. RMS deviation
in angstrom.

the highest energy along the path. If an energy profile had several
maxima, we selected the highest one only. Using the predicted posi-
tions of the saddle point, approximate saddle point structures were
obtained from the path splines as ϕ(ts). These structures were then
compared with those of the “true” saddle points found for each path
using standard second-derivative-based methods. Table 2 shows the
absolute energy differences and the RMS coordinate differences
between the estimated (interpolated) saddle point structures and the
optimized ones. In the absence of interpolation, the best estimate
for the saddle point would be the image with the highest energy in
the path. The comparison between this highest energy image and
the optimized saddle point is also shown in Table 2. Both the closest
image and interpolated structures are good approximations but the
latter have consistently smaller RMS coordinate differences and, in
all but two cases, smaller absolute energy differences.

Conclusions

The modifications to the NEB algorithm proposed here have been
tested on chemical systems of different complexities. The results
show a clear improvement in performance compared with a more
traditional NEB method as the number of gradient evaluations (and,
hence, computation time) can be reduced by 90% or more for
complicated systems.

The increased efficiency is mostly due to the use of a second
order optimization algorithm. This was evident during the early
stages of our work when the spline description of the path had yet to
be implemented. Rationalization is straightforward, as the L-BFGS
minimization works on all but one of the degrees of freedom of
the system, whereas the parametric representation of the path and
image repositioning affect only a single degree of freedom. This
observation can be related to a result in ref. 15, which found that an
analytical minimization of the spring forces did not yield significant
efficiency enhancements.

In addition to the performance improvement, the use of a para-
metric spline description of the path has other advantages. First,
the arbitrary spring forces of the original NEB are not needed, so
there is one less parameter to be specified. Second, interpolated
structures along the path are readily obtained, either for estimating
saddle point structures or for increasing the resolution of the path
sampling. Third, it would be relatively easy to implement an adap-
tive variant of the method in which the number of images along the
path changes dynamically as its length varies.
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