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A method is proposed to easily reduce the number of energy

evaluations required to compute numerical gradients when

constraints are imposed on the system, especially in connec-

tion with rigid fragment optimization. The method is based on

the separation of the coordinate space into a constrained and

an unconstrained space, and the numerical differentiation is

done exclusively in the unconstrained space. The decrease in

the number of energy calculations can be very important if

the system is significantly constrained. The performance of the

method is tested on systems that can be considered as com-

posed of several rigid groups or molecules, and the results

show that the error with respect to conventional optimizations

is of the order of the convergence criteria. Comparison with

another method designed for rigid fragment optimization

proves the present method to be competitive. The proposed

method can also be applied to combine numerical and analyti-

cal gradients computed at different theory levels, allowing an

unconstrained optimization with numerical differentiation

restricted to the most significant degrees of freedom. This

approach can be a practical alternative when analytical gra-

dients are not available at the desired computational level and

full numerical differentiation is not affordable. VC 2015 Wiley

Periodicals, Inc.

DOI: 10.1002/jcc.23987

Introduction

One of the central problems in computational chemistry is that

of geometry optimization or, more generally, of locating points

on a potential energy surface (PES) with some particular proper-

ties (minima, saddle points, crossing points,. . .)[1]. Although

there are algorithms that can perform geometry optimization

using only the energy computed at selected points of the

PES,[2–5] as the number of degrees of freedom increases their

performance degrades and their convergence is very slow.[6]

The optimization works much better when the gradient infor-

mation—the derivative of the energy with respect to the geo-

metrical coordinates—is available. The gradient, moreover, is

also an essential quantity if one is interested in the dynamics of

the system. For many electronic structure methods and software

packages, it is possible to obtain the gradient based on an ana-

lytical formulation, with a computational cost that is roughly

equivalent to that of computing the energy. However, the most

sophisticated methods often lack such an analytical implemen-

tation, and to obtain the gradient one must resort to numerical

differentiation by finite differences, requiring a large number

(proportional to the number of atoms in the system) of energy

calculations. Undoubtedly, the most desirable solution would be

to develop and implement the expressions necessary to com-

pute the analytical gradient for the method to be used, but this

tends to be an intimidating task that must, additionally, be per-

formed for every different method. Conversely, the possibility of

using numerical differentiation is often discarded because of its

high computational cost.

During the last years, there has been a change in the trend of

computer technology progress, and the paradigm has changed

from more powerful single processors to larger numbers of par-

allel “cores” or processing units. Computational scientists can no

longer assume that their programs will run faster in newer

machines, but instead they have to make sure that they can

take advantage of the increasingly parallel computing resources.

In this scenario, the effort required for an efficient implementa-

tion of analytical gradients is even greater, because the code

should also be parallelized. Even in the best circumstances, the

performance improvement due to parallelism is often only mod-

est. Conversely, an efficient computation of numerical gradients

in parallel is almost trivial to implement, and can be applied to

any electronic structure method with very little effort. This may

make the use of numerical gradients more appealing, where not

very long ago it would be out of question.

Another problem faced by geometry optimization methods

is the large dimensionality of the systems. As the number of

atoms increases, so does the number of coordinates and

degrees of freedom, and locating the optimum structure

becomes more difficult, not to mention the fact that the num-

ber of minima on the PES grows exponentially. A common

method to overcome this problem is reducing the
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dimensionality of the system by applying constraints or

“freezing” some degrees of freedom that are believed to be of

secondary importance for the problem under study. This may

be the case of the internal geometries of ligands in metal–

ligand complexes or bulky substituents in organic molecules.

The structures obtained from such a constrained geometry

optimization will be approximations to the true energy minima

(i.e., the minima obtained at the unconstrained level), but they

can be refined with a final unconstrained optimization if

greater accuracy is needed. A number of methods have been

proposed to perform constrained geometry optimizations.[7–10]

However, to the best of our knowledge, there has been no

attempt to apply a similar reduction of dimensionality to the

computation of numerical gradients. A recent method pub-

lished by Vysotskiy et al.[11] takes a similar approach, but

instead of explicitly calculating the gradient it fits the PES on a

local grid over the reduced dimensions.

In this work, we show how the constraints used to simplify

the optimization problem can also be exploited to reduce the

number of energy calculations required to compute the

numerical gradient. In addition, we propose a method to com-

bine numerical and analytical differentiation, allowing uncon-

strained optimizations but restricting the number of energy

evaluations. Together with the obvious parallelizability of the

numerical differentiation, these methods can render optimiza-

tions with numerical gradients a viable option for high-level

electronic structure calculations.

We have tested the performance of the proposed methods

on several sets of systems, composed of more or less inde-

pendent fragments (individual molecules or ligands), by com-

paring the optimized geometries and energies with those

obtained with a standard optimization method.

Method

As shown in previous works on projected constrained optimiza-

tion,[9,10] an optimization with a set of nonlinear constraints can be

formulated in terms of a unitary matrix T that separates the coordi-

nate space, q, into two orthogonal subspaces: one that (to first

order) modifies the constraints, and one that does not. Briefly, the

optimization problem can be stated as finding a point q� that mini-

mizes the energy EðqÞ, subject to a set of constraints expressed as:

riðq�Þ ¼ 0 (1)

If the total number of degrees of freedom is N and the num-

ber of independent constraints is m, the matrix T , of size N3N,

can be constructed as a combination of two smaller matrices:

T ¼ ð Tc Þ
z}|{m

ð Tu Þ
z}|{N2m

gN (2)

where Tc is of size N3m and defines the constrained subspace,

and Tu is of size N3ðN2mÞ and defines the unconstrained or

free subspace. Note that the operation in (2) is a simple juxta-

position and not a matrix product. The values for Tc and Tu

can be found considering that:

T t
c

@ri

@q
6¼ 0; T t

u

@ri

@q
¼ 0 8i 2 f1; . . . ;mg (3)

In other words, Tc is the subspace spanned by the different

@ri=@q vectors, and Tu is orthogonal to Tc. As the constraints

are, in general, nonlinear in the coordinates q, the values of

@ri=@q, and, therefore, of T, depend on q and must be calcu-

lated for each point on the PES.

A given optimization step Dq can be decomposed in two

separate steps in the constrained and unconstrained subspa-

ces, respectively:

Dc ¼ T t
cDq; Du ¼ T t

uDq (4)

such that they can be recombined to form the original step:

Dq ¼ TcDc1TuDu (5)

The step Dc is computed to satisfy the constraints, that is:

riðq1TcDcÞ ¼ 0 (6)

and if the constraints are fulfilled at the point q, then Dc ¼ 0;

in the rest of the paper, we assume this is the case (which cor-

responds to “frozen” degrees of freedom), although it does not

change the discussion. In addition, to first order, the constraints

are not modified by changes in the unconstrained step Du:

riðq1TuDuÞ ¼ riðqÞ 8i 2 f1; . . . ;mg; Du (7)

Similarly, the gradient vector can be separated in the two

subspaces:

@E

@q
¼ rEðqÞ ¼ gðqÞ ¼ Tcgc1Tugu (8)

gc ¼ T t
cgðqÞ; gu ¼ T t

ugðqÞ (9)

and a constrained optimization tries to find a stationary point

in the unconstrained subspace, that is:

g�u ¼ T t
ugðq�Þ ¼ 0 (10)

This already suggests that only the ðN2mÞ-dimensional vec-

tor gu would need to be known, rather than the N-dimen-

sional vector g. In the algorithms proposed,[9,10] the gradient is

used as the product T t
ug, while the full gradient g appears

only as an ingredient of the Hessian update in quasi-Newton

methods. Thus, ignoring the Hessian update, the optimization

process would not change if instead of the full gradient we

compute a partial gradient ~g such that T t
u ~g ¼ T t

ug. The most

trivial way of defining such a partial gradient is simply:

~gu ¼ gu; ~gc ¼ 0 ! ~g ¼ Tugu (11)

but using (9) to compute gu is not practical, as that would

require knowing the full gradient g.

With numerical differentiation, it is possible to calculate

directly the components of gu, by computing the energy at

displaced geometries along the unit vectors of the uncon-

strained subspace:
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gu;iðqÞ ’
Eðq1hTueu;iÞ2Eðq2hTueu;iÞ

2h
(12)

where h is the displacement length and eu;i is the ith canoni-

cal basis vector of RN2m, or, more practically, Tueu;i is the ith

column of Tu.

The method to obtain the partial gradient ~g can then be

stated as:

1. For a given geometry q, compute the derivatives of the

constraints @r=@q (see Ref. 10) and obtain Tu by ortho-

normalization, according to (3).

2. Generate the displaced geometries q6hti, where h is the

step size used for numerical differentiation and ti is the

ith column of Tu. For practical use, an iterative conver-

sion from internal to Cartesian coordinates may be

required (see Ref. 12 for details).

3. For each displaced geometry, compute the energy with

the chosen method.

4. Obtain gu with (12), and the partial gradient

~gðqÞ ¼ Tugu.

The partial gradient ~gðqÞ can then be used instead of the

full gradient gðqÞ for a constrained optimization.[9,10] It is

worth noting that once the projected constrained optimiza-

tion is implemented, the implementation of the above

method is straightforward, as the T matrix is already com-

puted, and no change at all is needed in the optimization

algorithm (or, indeed, any other code that makes use of the

gradient).

The numerical differentiation described above requires only

2ðN2mÞ11 energy evaluations, instead of the 2N11 that

would be required for the full gradient. The reduction is evi-

dently greater the more constraints are applied, and it is par-

ticularly important if the system is made out of a small

number of rigid fragments, where all the internal degrees of

freedom within each fragment are constrained. In this latter

case, the number of energy evaluations needed can also be

expressed as:

2nu11; nu ¼ 6nf2nl23na26 (13)

where nu is the number of unconstrained degrees of freedom,

nf is the total number of fragments, nl is the number of linear

fragments, and na is the number of single-atom fragments; if

the complete system is linear, the above equation should have

25 instead of 26. It is important to note that the number of

energy evaluations is linear with respect to the number of

fragments (it is at most 12nf211), and does not depend on

the size of the fragments.

Composite gradients

In the above formulation, the gradient in the constrained sub-

space, gc, is not evaluated but set to zero in eq. (11). This

takes advantage of the fact that in a constrained optimization

gc will be discarded anyway. But one may use the separation

into different subspaces more generally, without performing a

constrained optimization. One could, for example, compute gc

at some level of theory, gu at some other level, and build a

composite gradient with (8), which would then be used in

place of the true gradient. The effect, when using this com-

posite gradient in an optimization, is that different degrees of

freedom are optimized at different levels, without explicitly

splitting the system in separate subsystems.

For instance, if a system is made out of several molecules,

the intramolecular gradients can be computed at a “cheap”

level, such as DFT, while the intermolecular gradient is com-

puted at a level more adequate for describing interactions like

dispersion forces (say MP2 or CCSD(T)). The real advantage of

this approach comes when analytical gradients are not avail-

able for the second method. In this case, numerical differentia-

tion can be done only for the intermolecular degrees of

freedom, and the gradient for the intramolecular degrees is

obtained analytically with the first method.

For simplicity, we keep the same notation from the previous

section, although in this case both the “c” and “u” subspaces

are unconstrained. The Tc and Tu matrices are defined as in

(3), but the constraints in (1) are only pseudoconstraints or

“phantom” constraints, in the sense that they are defined, but

never enforced. After the Tc and Tu matrices are obtained, the

composite gradient gAB is constructed as:

gAB ¼ TcT t
cgA1TugB

u ¼ T
T t

cgA

gB
u

 !
(14)

where gA is the full gradient computed analytically with some

method A, while gB
u is computed numerically with (12) using

some method B. For an otherwise unconstrained optimization,

once the composite gradient is obtained, the T matrix is not

further needed and can be discarded.

Although the composite gradient is well defined as long as

the Tc and Tu matrices are, the energy corresponding to this

gradient is not. In an actual implementation, the reported

energy at each point of the optimization will be the energy

obtained either with method A or with method B, but neither

of them matches the composite gradient. This may affect the

performance of some optimization algorithms that make use

of the energy values (e.g., for adaptively modifying the step

length). A possible way to circumvent this problem would

involve computing the optimization step separately in each

subspace, and applying any step length update method inde-

pendently; however, that would require a more complicated

implementation and additional energy calculations. The pres-

ent implementation simply uses the composite gradient gAB as

if it were the true one, without any modification to the stand-

ard optimization algorithms.

Some practical considerations

The constraints defined in (1) are usually derived exclusively

from geometrical parameters: they involve distances and

angles between atoms, and the derivatives needed in (3) are

readily obtained. In the examples presented in this work, we

have always considered the system as formed by several
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“fragments,” and defined the constraints as all the intrafrag-

ment degrees of freedom. This results in the optimization of

rigid fragments (except for composite gradients, see above).

For defining these intrafragment degrees of freedom, we

constructed a Z-matrix[13] for each fragment from their An

atoms in arbitrary order (as defined in the input). The Z-matrix

contains Ai–Ai21 distances, Ai2Ai212Ai22 angles and Ai2Ai21

2Ai222Ai23 dihedrals, and no effort was done to ensure

chemical connectivity or optimize the Z-matrix. As long as this

simple definition does not result in ill-conditioned constraints,

the Tc and Tu matrices will correctly separate the intrafrag-

ment and interfragment coordinates. Additional numerical

robustness and stability in the algorithm can be obtained by

optimizing the Z-matrix or manually defining the intrafragment

constraints, but for the purpose of this work this was not

needed. Note that for (12) only Tu is needed, which is defined

as the subspace orthogonal to the constraints, so the result

does not depend on the particular definition of the con-

straints, as long as they span the same subspace.

It has been mentioned above that the full gradient is only

needed for the Hessian update algorithms. This is especially

important when using constrained optimizations as a means

of approaching a region where the PES has the correct curva-

ture for a saddle point, eventually performing a transition

state optimization without constraints. In this case, one wants

the force constant along the constrained coordinate (the

putative reaction coordinate) to be updated during the opti-

mization, and for this to happen the gradient in this direction

must be evaluated, even if it is not directly used in the opti-

mization. There are other situations where the gradient in a

constrained direction is desired, for example when computing

a minimum energy path as a series of constrained optimiza-

tions, where the gradient at one point defines the constraint

for the next point.[14] And in other cases, the constraints

themselves, or their derivatives, needed for T, depend on the

full gradient, such as when using the energy difference

between two states as a constraint for optimizing a

minimum-energy crossing point.[10] This means that not all

kinds of constraints should be considered when evaluating gu

numerically, and sometimes a particular constraint must be

applied in the optimization but ignored for the numerical dif-

ferentiation (note that this is the opposite case from the com-

posite gradients, as implemented above, where constraints

are applied for the differentiation but ignored during the

optimization).

Computational Details

The present method for constrained geometry optimization

using numerical gradients has been implemented into a devel-

opment version of the MOLCAS 8 quantum chemistry pro-

gram.[15] To evaluate the performance of the method, we have

computed the equilibrium geometries of several sets of molec-

ular complexes. The first of these sets, Set I, is identical to the

S22 set of weakly bound dimers,[16] which has been designed

with a variety of intermolecular interactions in mind (hydrogen

bonding, p–p stacking, mixed electrostatic/dispersion interac-

tions, etc.). The second set, Set II, is composed of water clus-

ters of various sizes (two, three, and four water molecules).

This set was chosen to examine the behavior of the present

method with an increasing number of fragments. As a third

test set, Set III, we have chosen some of the systems used by

Vysotskiy et al. in their study[11] on fragment-based geometry

optimization. This includes the ethylene molecule, the water

dimer, the formic acid dimer, and the formic acid dimer–water

cluster. In addition, we have used as a test case the

Fe(CO)3[P(CH3)3]2 transition metal complex (Set IV). This system

serves as a complement to the other three benchmark sets,

whose members are composed of first-row atoms only. An

account of all 30 systems considered in this study is given in

Table 1; the table shows the number of energy calculations

needed for each numerical gradient evaluation when using

constraints (nc
E, as proposed in this work) and without con-

straints (nu
E ), together with the corresponding reduction in

computational effort: for the largest systems in Set I the gain

is more than 90%.

The same general strategy was used for all constrained opti-

mizations in this work. First, the geometry of each complex

was optimized using the standard, fully unconstrained

approach. The resulting equilibrium structures were then

deformed by modifying the relative positions/orientations of

the molecules of which they are composed. Finally, the inter-

molecular coordinates were reoptimized using the present

constrained approach as well as the approach described in

Ref. 11 [hereafter referred to as the Vysotskiy–Bostr€om–Verya-

zov (VBV) approach]. The ethylene monomer is clearly a spe-

cial case. For this system, the division into fragments was

made in terms of the two CH2 groups. Thus, the

“intermolecular” interaction in this case is the C@C covalent

bond. The Fe(CO)3[P(CH3)3]2 transition metal complex deserves

commenting as well. For this system, the constrained optimiza-

tion was performed with the five ligands and the central metal

atom treated as separate fragments. It should be noted,

though, that the central metal atom, lacking internal coordi-

nates, is not part of the geometrical constraints.

The deformation of the fully optimized structures was done

in different ways depending on the benchmark set. In the case

of Set I, we used an automated procedure in which one of the

dimer fragments was kept fixed, whereas the other was trans-

lated a distance 0.5–1.0 Å in a random direction. For Sets II

and IV, the deformation was done manually and involved both

translations and rotations of the individual fragments. Finally,

in the case of Set III, starting structures for the constrained

optimization were taken from Ref. 11 to ease comparison with

that work. We note that in this case, the deformation is gener-

ally larger than for the other benchmark sets. The Cartesian

coordinates of all starting structures are available in the Sup-

porting information.

The energy and gradient calculations were performed with

the density-fitted MP2 method,[17] which is able to properly

treat dispersion interactions at a reasonable computational

cost. The auxiliary basis needed in the fitting procedure was

generated on-the-fly using the Cholesky decomposition tech-

nique.[18] As for the one-electron basis, the cc-pVDZ basis of
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Dunning was used for Sets I, II, and IV, whereas the corre-

sponding augmented version, aug-cc-pVDZ, was used for most

of Set III. The only exception is the ethylene monomer, which

was optimized using the ANO-L-VDZP basis set. This is in

accordance with Ref. 11.

The unconstrained optimizations were largely performed

with the default MOLCAS optimization scheme. However, in a

few difficult-to-converge cases, Cartesian optimization coordi-

nates had to be adopted instead of the (default) internal coor-

dinates. Conversely, the calculations performed with the

constrained method were always done using both internal and

Cartesian coordinates, as well as using a number of different

convergence criteria. The default convergence criterion in

MOLCAS requires that the root mean square or RMS (max)

step length is less than 1:2 � 1023 a0 (1:8 � 1023 a0) and the

RMS (max) gradient is less than 3:0 � 1024 Eha21
0

(4:5 � 1024 Eha21
0 ). In addition, we used a modified criterion in

which the condition on the step length is not enforced pro-

vided that the change in energy is below a certain threshold, s.

Three different values of s were used: 1:0 � 1026 Eh; 5:0 � 1026 Eh

and 1:0 � 1025 Eh. In the calculations performed with the VBV

approach, default settings were used throughout. All geometry

optimizations were done without symmetry constraints.

The “composite gradient” method (see Composite gradients

section) was tested on three different systems: ammonia

dimer, stacked adenine–thymine, and trimethylacrolein (2,3-di-

methyl-2-butenal, see Fig. 1). For the first two, which were also

included in Set I, the cc-pVDZ basis set was used, while the

latter used the ANO-RCC basis set, with double-f and polariza-

tion contraction (ANO-RCC-VDZP).[19] The methods used were

MP2 and CCSD(T) for the ammonia dimer, DFT(B3LYP) and

MP2 for the adenine–thymine complex, and MP2, CASSCF and

CASPT2 for trimethylacrolein. For the multiconfigurational

methods (CASSCF and CASPT2), an active space of six elec-

trons in five orbitals was used, including the 4 p and p� orbi-

tals and the oxygen n orbital perpendicular to the C@O bond.

Table 1. Overview of benchmark systems considered in this study.

System nf N nu
E nc

E c (%)

Set I

2-pyridoxine–2-aminopyridine 2 25 139 13 9.4

Adenine–thymine (stack) 2 30 169 13 7.7

Adenine–thymine (WC) 2 30 169 13 7.7

Ammonia dimer 2 8 37 13 35.1

Benzene–ammonia 2 16 85 13 15.3

Benzene dimer (C2h) 2 24 133 13 9.8

Benzene dimer (C2v ) 2 24 133 13 9.8

Benzene–HCN 2 15 79 11 13.9

Benzene–methane 2 17 91 13 14.3

Benzene–water 2 15 79 13 16.5

Ethene dimer 2 12 61 13 21.3

Ethene–ethyne 2 10 49 11 22.4

Formamide dimer 2 12 61 13 21.3

Formic acid dimer 2 10 49 13 26.5

Indole–benzene (stack) 2 28 157 13 8.3

Indole–benzene (T-shape) 2 28 157 13 8.3

Methane dimer 2 10 49 13 26.5

Phenol dimer 2 26 145 13 9.0

Pyrazine dimer 2 20 109 13 11.9

Uracil dimer (HB) 2 24 133 13 9.8

Uracil dimer (stack) 2 24 133 13 9.8

Water dimer 2 6 25 13 52.0

Set II

Water dimer 2 6 25 13 52.0

Water trimer 3 9 43 19 44.2

Water tetramer 4 12 61 25 41.0

Set III

Ethylene molecule 2 6 25 13 52.0

Water dimer 2 6 25 13 52.0

Formic acid dimer 2 10 49 13 26.5

Formic acid dimer–water cluster 3 13 73 19 26.0

Set IV

Fe(CO)3[P(CH3)3]2 6 33 187 49 26.2

Abbreviations: WC, Watson–Crick; HB, hydrogen bond; nf , number of fragments; N, number of atoms; nu
E , number of energy evaluations per gradient,

without constraints; nc
E, number of energy evaluations per gradient, with constraints; c, relative cost per gradient (nc

E=nu
E ).

Figure 1. 2,3-dimethyl-2-butenal, “trimethylacrolein.”
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The CASSCF calculations were done with a state-average of 4

roots, and for CASPT2, the standard IPEA shift of 0.25 Eh was

applied, as well as an imaginary shift of 0.1 Eh. Except for the

ammonia system, all calculations were performed with the

same Cholesky-based density fitting technique indicated

above. The optimizations were done using Cartesian coordi-

nates, with an energy threshold s of 5:0 � 1026 Eh, without

symmetry constraints.

Results and Discussion

Constrained optimization using numerical gradients

We begin by examining the performance of the constrained

optimization method described in Method section. For this

purpose, we use the results of the benchmark calculations out-

lined in Computational details section. The efficiency of the

present method is evaluated based on the number of energy

calculations required to optimize the molecular complexes in

Sets I–IV, whereas the accuracy is assessed from how much

the geometries and energies differ from the full optimization

results.

The performance for the weakly bound dimers of Set I is

illustrated in Figure 2. Due to the large number of systems in

this set, only mean and median values are shown. As can be

seen from Figure 2a, the choice of coordinates (internal or

Cartesian) has only a moderate effect on the overall efficiency

of the optimization procedure. Noteworthy, still, is a tendency

for the Cartesian coordinates to give a more uniform conver-

gence behavior across the benchmark set. This is especially so

when the default convergence criterion is used, as can be

seen by comparing the difference between the mean and

median number of energy calculations for the two coordinate

types.

An unusually poor convergence was observed when opti-

mizing some of the p–p stacked structures using internal coor-

dinates. Similar although less severe problems were

encountered with Cartesian coordinates. In both cases, the

gradient was found to converge within only a fraction of the

total number of iterations, with the remaining iterations being

spent on small geometry updates on an essentially flat PES.

Introducing the energy-based convergence criterion described

in Computational details section prevents the bulk part of

these updates from taking place. As a consequence, the num-

ber of energy calculations is significantly reduced.

Incorporating the energy change into the convergence crite-

rion has little effect on the final energies and geometries, as

shown by Figures 2b and 2c. In fact, for some complexes such

as the p–p stacked structures discussed above, the agreement

with the reference may actually improve. Note that the unusu-

ally large energy deviation observed when internal coordinates

are used is due to one particular complex, the formic acid

dimer, alone. The optimization in this case, regardless of the

convergence criterion, was found to render the two hydrogen

bonds �0:06 Å too short. The same problem is not present

when Cartesian coordinates are used.

Taking into account the full data underlying Figure 2, we

find that a good balance between efficiency and accuracy is

obtained with Cartesian coordinates and an energy threshold

of 1:0 � 1026 Eh to 1:0 � 1025 Eh. With this particular setting,

the present method appears to be more cost efficient than

the VBV approach. Note, however, that with the latter

approach, results were only obtained for 14 of the complexes

in Set I. A comparison with the present method restricted to

the same subset can be found in Supporting Information Fig-

ure S1. As can be seen from that figure, the overall picture is

unchanged.

The computational effort of each iteration in the present

method scales linearly with the number of fragments, as dis-

cussed in Method section. Thus, we expect the real advantage

of this method to become clear for systems composed of, say,

three fragments or more. That this is indeed the case, and that

the linear scaling of the gradient evaluation is not offset by an

excess in the number of iterations, is illustrated by the water

cluster data in Figure 3. As can be seen from this data, the

number of energy calculations increases by a factor of two,

roughly, for each step going from the dimer to the trimer to

the tetramer. This can be compared with the close to fourfold

increase obtained with the VBV method. For the particular

case of the tetramer, the present method requires between

600 and 1000 energy calculations depending on which coordi-

nates and convergence criterion are used. The corresponding

number required by the VBV method is 6495. We further note

Figure 2. Performance of the present constrained optimization method for

the S22 set of weakly bound dimers (Set I). The mean and median number

of energy calculations a) is shown together with the mean and median

energy deviation b) and RMS distance c) with respect to the fully opti-

mized structures. The numbers appearing on the x-axis refer to different

values of the energy convergence criterion (in units of Eh). Bars colored in

cyan refer to results obtained by removing the formic acid dimer from the

benchmark set (see discussion in the main text). Results obtained with the

VBV method for a subset of 14 systems are included for comparison. [Color

figure can be viewed in the online issue, which is available at wileyonlineli-

brary.com.]
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that the efficiency improvement obtained with the present

method does not occur at the cost of a reduced accuracy in

the final energies and geometries, as can be seen from Figures

3b and 3c.

Unlike the VBV approach, the present method is designed

to be used with a Hessian updating scheme. This is crucial as

evaluating the Hessian explicitly would ruin the linear-scaling

behavior discussed above. A possible drawback is a less opti-

mal behavior when starting far away from the equilibrium

geometry. To get an idea of the extent of this problem, we

turn to the data for Set III shown in Figure 4. The starting

structures for this set are considerably more deformed than

for the other three sets. Comparing with the VBV approach,

the present method can be seen to require fewer energy cal-

culations for each system in the test set. This is so regardless

of which coordinates and convergence criterion are used. It

appears that although an explicit Hessian may well improve

convergence in cases like these, the cost of obtaining that

Hessian is usually not compensated for by a sufficient gain in

the number of iterations.

As a final illustration of the performance of the present

method, we consider the optimization of the Fe(CO)3[P(CH3)3]2

complex displayed in Figure 5. The sheer size of this system,

both in terms of the number of electrons and the number of

fragments, makes it a challenge to any numerical gradient-

based approach. This is true also for the present approach, as

can be seen from the number of energy calculations listed in

Table 2. We note, however, that without the favorable scaling

demonstrated by eq. (13) the optimization of this complex

would be an even more daunting task.

Figure 3. Performance of the present constrained optimization method for

water clusters of increasing size (Set II). The number of energy calculations

a) is shown together with the energy deviation b) and RMS distance c)

with respect to the fully optimized structures. The numbers appearing in

the figure legend refer to different values of the energy convergence crite-

rion (in units of Eh). Results obtained with the VBV method are included

for comparison.

Figure 4. Performance of the present constrained optimization method for various systems taken from Ref. 11 (Set III). The numbers appearing in the figure

legend refer to different values of the energy convergence criterion (in units of Eh). Results obtained with the VBV method (taken from Ref. 11) are

included for comparison.

Figure 5. Structure of the Fe(CO)3[P(CH3)3]2 complex. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Composite gradients

The composite gradient method proposed was tested in

three sample systems, as detailed in Computational details

section. In this section, the main interest is not to discuss the

performance, measured in the number of iterations or energy

calculations, but to discuss the effects of using a composite

gradient.

The most significant optimized parameters for a single

ammonia molecule and the dimer, at MP2 and CCSD(T) levels,

are shown in Table 3, the structure of the dimer is displayed in

Figure 6. These results correspond to full optimizations using

analytical gradients in the case of MP2 and regular numerical

differentiation for CCSD(T). It is evident that the main effect of

the calculation level is on the intermolecular distance in the

dimer, which is �0.02 Å larger with CCSD(T). If a full optimiza-

tion at the CCSD(T) level is not affordable or desired (it

requires 37 single-point calculations per iteration), a possible

strategy is to optimize a single molecule and then optimize

the dimer keeping the intramolecular geometries frozen (13

single-point calculations per iteration). This fragment-based

optimization can be done using the ammonia geometry opti-

mized at either MP2 or CCSD(T) level and in both cases the

resulting N1–H5 distance is 2.470 Å, but this approach does

not allow the N1–H2 distance to respond to the presence of

the other molecule.

In contrast, an optimization using composite CCSD(T) and

MP2 gradients (analytical MP2 for the intramolecular coordi-

nates, numerical CCSD(T) for the intermolecular) relaxes all

coordinates simultaneously. The optimized structure has a N1–

H2 distance of 1.025 Å and N1–H3 of 1.023 Å, which agree

with the pure MP2 result, and a N1–H5 distance of 2.467 Å, in

agreement with the pure CCSD(T) one.

Regarding the energies given in Table 4, even though the

composite gradient method does not have a well-defined

energy, it attains a CCSD(T) energy at the final optimized

geometry lower than the CCSD(T) energies at the final geome-

tries of the full MP2 optimization or the optimization with fro-

zen MP2 molecules. The optimization with frozen CCSD(T)

molecules reaches a lower energy, but as indicated above it

cannot reproduce the changes in the intramolecular geometry

when the dimer is formed.

A more interesting situation appears with the stacked ade-

nine–thymine complex. The standard density functionals such

as B3LYP do not describe properly the dispersion interactions

that are a main factor for the stability of the stacked basis pair

complexes and, therefore, a B3LYP optimization results in the

two molecules turning and adopting an in-plane conformation

instead. With MP2, however, the correct stacked complex can

be obtained. Additionally, the formation of the complex can

introduce significant changes in the structure of the molecules,

especially in the polar groups, so that an optimization of the

complex with frozen intramolecular structures obtained in iso-

lation may not be appropriate.

To test the composite gradient method, it was compared

with several other optimizations. First, the two molecules were

optimized separately at B3LYP and MP2 levels; the stacked

complex was then optimized at MP2 level keeping the intra-

molecular structures frozen at their MP2 or B3LYP geometries;

finally, the complex was fully optimized using MP2, and with

composite gradients (B3LYP for intramolecular degrees of free-

dom, MP2 for intermolecular ones). The RMS distance of the

different structures are given in Table 5. The complex forma-

tion induces a distortion of 0.04–0.06 Å in the bases, according

to the MP2 structures. When composite gradients are used

and the intramolecular structures are relaxed with B3LYP, the

Table 2. Performance of the present constrained optimization method

(standard convergence criterion) for the Fe(CO)3[P(CH3)3]2 complex (Set

IV).

Coordinates NE DE DRMS

Internal 5489 12.9 0.025

Cartesian 4215 41.3 0.044

The number of energy calculations (NE) is shown together with the

energy deviation (DE, in lEh) and RMS distance (DRMS, in Å) with respect

to the fully optimized structure.

Figure 6. Structure of the ammonia dimer.

Table 3. Optimized bond distances (in Å) and angles (in degrees) for the

ammonia molecule and ammonia dimer (see Fig. 6), obtained with full

optimization at MP2 and CCSD(T) levels.

NH3 (NH3)2

MP2 CCSD(T) MP2 CCSD(T)

N–H 1.023 1.027 N1–H2 1.025 1.028

H–N–H 103.9 103.5 N1–H3 1.023 1.027

H–N–H–H 108.4 107.8 N1–H5 2.444 2.466

Table 4. CCSD(T) energies (DE, in kJ mol21) for the ammonia dimer at

different geometries.

Inter Intra DE

Full MP2 0.17

Full CCSD(T) 0.00

CCSD(T) Frozen MP2 0.21

CCSD(T) Frozen CCSD(T) 0.10

CCSD(T) MP2 0.15

The methods used for optimization of the intermolecular and intramo-

lecular degrees of freedom are indicated in the first two columns, the

energies are relative to the full CCSD(T) optimization.
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distortion is greater; this is due to the fact that there is no

stacked minimum at B3LYP level, so that the distortion

increases when the molecules are forced to stay in this

conformation.

Table 6 displays the final energies and some representative

distances (see Fig. 7) of the different optimized complexes.

The distance between the centers of mass, A–T, is quite con-

sistent in all cases, which was to be expected as the intermo-

lecular degrees of freedom are always optimized at MP2 level.

Only when composite gradients are used (MP2 and B3LYP) is

the distance slightly larger. This is compensated for by the dis-

tortion of the molecules mentioned above, which tends to

approach the polar substituents between the two molecules,

as can be seen in the three interatomic distances given in

Table 6. Regarding the energies, it is worth noting that the

B3LYP relaxation of the intramolecular geometries is able to

decrease the MP2 energy of the complex by 2 kJ mol21; con-

versely optimization with frozen MP2 or B3LYP intramolecular

geometries results in an energy difference of more than 4

kJ mol21, although the intermolecular distances are practically

the same.

As a final example, trimethylacrolein (Fig. 1) was consid-

ered. In this system, the goal is to test the composite gradi-

ent method in excited electronic states. The “high level”

method is CASPT2, for which analytical gradients are not

available in MOLCAS; “low level” methods are CASSCF and

MP2. As the active space for CASSCF and CASPT2 calcula-

tions spans only the central skeleton (O@C1AC2@C3), the

multiconfigurational character of these methods will mainly

affect this part of the molecule, and the internal degrees of

freedom of the CH3 groups are expected to be relatively

unaffected by the electronic state. Therefore, for the calcula-

tions using two methods, the methyl groups were defined

as “fragments,” such that their internal geometries were

either frozen or optimized with the low-level method, while

all the other degrees of freedom were optimized with

CASPT2.

In the ground state, it is possible to perform a full optimiza-

tion with MP2 as well as CASSCF and CASPT2. Table 7 shows

the energies and geometries for the optimized structures.

Compared with the CASPT2 optimization, CASSCF yields better

bond lengths and vertical CASPT2 energies than MP2, but the

CASPT2 energy at the MP2 geometry is lower than at the

CASSCF minimum structure. When the internal CH3 degrees of

freedom are excluded from the CASPT2 optimization, the opti-

mized bond distances and vertical energies remain consistent

with the full optimization, validating such an exclusion. The

final energies reflect the fact that the MP2 optimization of the

methyl groups gives a lower energy than the CASSCF

optimization.

When the first excited state is optimized, MP2 is not an

option for the full optimization. Table 8 shows the energy and

geometry results for different optimizations on the excited

state surface, where the “MP2” structures for the methyl

groups are either frozen at their ground state values or opti-

mized with their ground state gradients. As in the ground

state, the bond lengths and vertical energies of all CASPT2

optimizations are completely stable, and the final energies are

lower when combining CASPT2 and MP2 than with CASPT2

and CASSCF.

From the previous results, it would seem that there is no

real advantage in optimizing the methyl groups versus keep-

ing them frozen. With CASSCF optimization, the CASPT2

energy of the optimized structure actually increases with

respect to the frozen structure, and even with MP2 optimiza-

tions the gain is minimal. However, there are other cases

where the relaxation of the degrees of freedom not included

in the high level optimization may be more important, as

shown in the adenine–thymine complex. In any case, exclud-

ing the methyl groups from the numerical differentiation at

CASPT2 level reduces the required number of energy evalua-

tions per gradient from 91 to 55, with very little effect on the

geometries and energies.

In summary, the three examples discussed above show that

the proposed composite gradients can be used to optimize

simultaneously different degrees of freedom at different com-

putational levels. Obviously, some care should be taken to

ensure that the separation of the degrees of freedom and the

combination of methods is meaningful for the situation at

hand. In some cases, it may be good enough to optimize with

frozen fragments; however, the use of composite gradients

instead of frozen fragments introduces only a small additional

computational effort (the analytical gradient at a low level)

and ensures that all the degrees of freedom respond to

changes in the rest of the system.

Table 5. RMS distance (in Å) of adenine and thymine optimized in differ-

ent conditions, with respect to the isolated MP2 structures. The last two

rows correspond to the molecules in the stacked complex.

Inter Intra Adenine Thymine

– MP2 0.0000 0.0000

– B3LYP 0.0270 0.0065

Full MP2 0.0610 0.0403

MP2 B3LYP 0.0897 0.1010

Figure 7. Structure of the adenine–thymine stacked complex. [Color figure

can be viewed in the online issue, which is available at wileyonlinelibrary.

com.]
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Conclusions

We have implemented and tested a simple way to reduce the

number of energy evaluations required to obtain a numerical

gradient, whenever there are constraints applied that reduce the

number of effective degrees of freedom in the system. The

method uses the same linear transformation matrix T defined for

constrained optimizations,[10] such that the additional computa-

tions are minimal and no change at all is required in the optimi-

zation algorithm. The tests presented in this work show that, by

performing this partial numerical differentiation, the accuracy of

the final constrained optimization is not significantly affected.

Comparison with a method with similar features[11] shows a com-

petitive performance based on the total number of energy evalu-

ations and accuracy of the final result, while the present method

is expected to have a better scaling as the number of fragments

(or unconstrained degrees of freedom) increases.

The present approach does not intend to be a replacement

for the more conventional optimizations with analytical gra-

dients, when they are available. However, the combination of

extensive constraints (rigid fragments) and partial numerical

differentiation can be attractive for optimizations with elec-

tronic structure methods that lack an analytical derivative

implementation, especially if large parallel-computing resour-

ces can be used, as the multiple energy evaluations required

can be trivially performed in parallel. Whether or not adding a

particular set of constraints to a system affects the validity of

the results is something that must be considered for each

case, depending on the system and properties to be studied,

and that is beyond the scope of this work.

We have also proposed a method that combines numerical

differentiation for a limited set of degrees of freedom and ana-

lytical derivatives for the rest, creating a “composite gradient.”

This allows the same reduction in the number of energy evalu-

ations needed, without the requirement of freezing fragments

or coordinates, effectively relaxing different degrees of free-

dom at different computation levels. The examples studied

prove that with an adequate selection of methods and separa-

tion of coordinates, meaningful results can be obtained at a

reduced cost.

Table 6. MP2 energy (DE, in kJ mol21) and intermolecular distances (in Å) of the adenine–thymine stacked complex at different geometries.

Inter Intra DE A–T H9–O2 N7–H3 H10,1–O4

Full MP2 0.00 3.105 2.899 2.942 2.586

MP2 Frozen MP2 3.12 3.106 3.073 2.976 2.918

MP2 Frozen B3LYP 7.52 3.103 3.085 2.983 3.010

MP2 B3LYP 5.45 3.138 2.693 2.894 2.606

The methods used for optimization of the intermolecular and intramolecular degrees of freedom are indicated in the first two columns, the energies

are relative to the full MP2 optimization. A–T: distance between the centers of mass of the rings, see Figure 7 for other distances.

Table 7. CASPT2 energy (DE, in kJ mol21), vertical absorption energy (Tv, in eV), and bond distances (in Å) of trimethylacrolein at different geometries in

the ground state.

Main CH3 DE Tv O–C1 C1–C2 C2–C3

Full CASSCF 3.47 3.88 1.209 1.475 1.349

Full MP2 0.91 3.72 1.233 1.469 1.355

Full CASPT2 0.00 3.84 1.219 1.480 1.348

CASPT2 Frozen CASSCF 1.85 3.84 1.219 1.480 1.348

CASPT2 Frozen MP2 0.08 3.84 1.219 1.480 1.348

CASPT2 CASSCF 2.14 3.84 1.219 1.480 1.348

CASPT2 MP2 0.01 3.84 1.219 1.479 1.348

The methods used for optimization of the internal degrees of freedom of the methyl groups and the rest of the molecule is indicated in the first two

columns, the energies are relative to the full CASPT2 optimization.

Table 8. CASPT2 energy (DE, in kJ mol21), vertical emission energy (Tv, in eV), and bond distances (in Å) of trimethylacrolein at different geometries in

the first excited state.

Main CH3 DE Tv O–C1 C1–C2 C2–C3

Full CASSCF 2.92 2.50 1.357 1.369 1.414

Full CASPT2 0.00 2.56 1.352 1.378 1.405

CASPT2 Frozen CASSCF 1.79 2.56 1.352 1.378 1.404

CASPT2 Frozen MP2 0.73 2.56 1.352 1.378 1.404

CASPT2 CASSCF 1.95 2.56 1.352 1.378 1.404

CASPT2 MP2 0.37 2.56 1.352 1.378 1.404

The methods used for optimization of the internal degrees of freedom of the methyl groups and the rest of the molecule is indicated in the first two

columns, the energies are relative to the full CASPT2 optimization.
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In summary, we believe that the methods presented in this

work will help extending the application of state-of-the-art

theoretical methods to larger, more realistic chemical systems

including bulkier groups and substituents.
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