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We examine the Stark component of the solute-solvent interaction energy and check the validity of the
mean field approximation (MFA) in the theoretical study of liquids and solutions. We considered two types
of systems: methanol, ethanol, and propanol liquids and formaldehyde, acetaldehyde, and acetone in aqueous
solution. We found that, independent of the level of calculation (HF, MP2, or MCSCF), the errors introduced
by MFA are less than 5% in the interaction energy and less than 1% in the dipoles. We propose an approximate
expression for the Stark component that reduces the errors in the interaction energy to below 1.6%.

I. Introduction

Many of the most frequently used methods for the study of
solvent effects make use of the mean field approximation
(MFA). The different quantum versions of continuum models
(SCRF,1 PCM,2 multipole expansions,3 etc.) or the methods
based on Langevin dipoles4 are representative examples. In all
these methods, the solute is represented quantum mechanically,
whereas the solvent response is described classically through
very simplified models that completely neglect the microscopic
structure of the solvent and the possible presence of specific
interactions. Because of this, several methods have been
proposed in the past decade that combine MFA with a detailed
description of the solvent structure obtained either from integral
theories, the reference interaction site method in the case of
RISM/HF,5 or from simulations, when the averaged solvent
electrostatic potential/molecular dynamics method, ASEP/MD,6

is used.
In MFA-based methods, the energy and wave function of the

solute molecule are obtained in the presence of the averaged
perturbation generated by the solvent.2b The main advantage of
this approximation is that it notably reduces the number of
quantum calculations. For instance, whereas in traditional
quantum mechanics/molecular mechanics7 (QM/MM) methods
(where MFA is not used), it is necessary to perform one quantum
calculation for each chosen solvent configuration, ASEP/MD6

or RISM/HF5 require only 3-10 quantum calculations depend-
ing on the number of cycles needed to reach convergence.

As with any other approximation, MFA introduces errors into
the evaluation of the solute-solvent interaction energy and the
solute properties. These errors are associated with the neglect
of the correlation between the motion of the solvent nuclei and
the response of the solute electron polarizability; that is, MFA
does not allow the solute to polarize in response to a change in
the solvent nuclear configuration. This correlation energy is
usually known as the Stark component.8,9

Despite the extended use of MFA in solvent effect theories,
few studies have focused on the evaluation of the Stark
component. Linder,8 and later Karlstrom and Halle,9 proposed
expressions for this component based on continuum models. In
both cases, the magnitude of the Stark component was related
to the solute polarizability and the difference between the dipole

reaction factors evaluated at zero and optical frequencies:

whereKB is the Boltzmann constant,T is the absolute temper-
ature,Rlk is thelk component of the solute polarizability tensor,
and glk is the lk component of the Onsager factor tensor
evaluated at zero and optical frequencies. Like the rest of the
expressions based on continuum theories, eq 1 neglects the
effects of the microscopic structure of the solvent and of the
specific interactions. Furthermore, a value has to have been
assigned to the cavity radius that holds the solute molecule,
and this is not always easy.3b,10

As was indicated above, the ASEP/MD theory6 combines
MFA with MD calculations and, hence, does not suffer from
the limitations of continuum models. We here use this theory
to evaluate the Stark component calculated as the difference
between the solute-solvent interaction energy when the MFA
is used and when it is not. Our aim is 2-fold. First, we shall
evaluate the Stark component for a few representative systems.
This is an important preliminary step because the validity of
the MFA-based theories depends on the supposition that this
component remains small. Second, we shall show how an
estimate of this component can easily be obtained from
knowledge of the solvent electric field fluctuations at the
position occupied by the solute.

The rest of the paper is organized as follows. In sections II
and III, we detail the method that we follow in the determination
of the magnitude of the Stark component and present an
approximate expression that permits a rapid evaluation of this
component. Section IV presents the results for various hydrogen-
bonded systems using several levels of calculations. Section V
presents our conclusions.

II. Methods

(a) Direct Determination of the Stark Component.For a
direct determination of the magnitude of the errors introduced
by the MFA, we have to compare a full calculation of the energy
and properties of a solute molecule in solution with the result
when the MFA is introduced.

∆WStark) -
1

2
KBT ∑

l
∑

k

Rlk[glk(ε0) - glk(ε∞)] (1)
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We use a QM/MM method to obtain the solute wave function
in solution. The solvent effect theory involving coupling between
a quantum and a classical system has been widely discussed.7

For clarity, we shall summarize the main points of the
implementation of the method.

The Hamiltonian model is partitioned in the usual way:

with terms that correspond to the quantum part,HQM, the
classical part,HMM, and the interaction between them,HQM/MM.
In our case, the quantum part is formed by the solute molecule,
whereas the classical part includes all of the solvent molecules.

The energy and wave function of the solvated solute molecule
are obtained by solving the effective Schro¨dinger equation for
each configuration:

The interaction term,HQM/MM, takes the following form:

where F̂ is the solute charge density andV̂S(r; X) is the
electrostatic potential generated at the positionr by the solvent
configurationXi. If the solvent is regarded as nonpolarizable,
then this potential is nothing more than the electrostatic potential
generated by the charges that represent the solvent molecules
during the simulation. If the solvent is polarizable, we have also
to include the contribution from the induced dipoles. The term
HQM/MM

vdw is the Hamiltonian for the van der Waals interaction,
which is generally represented by a Lennard-Jones potential.
Schrödinger’s equation has to be solved for each point of
configuration space, usually by sampling through molecular
dynamics or Monte Carlo simulations.11

The desired properties are then obtained by averaging over
the N solvent configurations

where the differentA(Xi) values are obtained from the solute
wave function,Ψ(Xi), calculated in the presence of the solvent
configurationXi.

On the contrary, in MFA, one averages the solvent perturba-
tion, ĤQM/MM

elect :

where the brackets denote a statistical average. The term〈V̂S(r)〉
is usually known as the averaged solvent electrostatic potential
(ASEP). Substituting (7) into (4) and (3), we obtain the energy,
EMFA, and wave function,ΨMFA, of the solute in the presence
of the averaged solvent configuration. The obvious advantage
of this approximation is that only one quantum calculation has
to be performed. The Stark component is then calculated as the
difference between the energies obtained with eqs 6 and 7, that
is, WStark ) 〈E〉 - EMFA.

Different mean field models can be obtained if we vary the
description of the solute-solvent interaction term (point charges,
point charges+ polarizabilities, multipole expansion, pseudo-
potentials, etc.) or the way in which the different solvent
configurations are obtained (MD, MC, integral theories, etc.)

In our case, we obtain the solvent configuration from MD,
and the ASEP is represented by a set of point charges chosen
in the following way.

1. We include the charges belonging to solvent molecules
that, in any of the MD configurations, lie within a sphere of
radiusRchosen in such a way that it includes the first solvation
shell. The value of any charge is then divided by the number
of solvent configurations included in the calculation of the
ASEP.

2. Next, a second set of charges is obtained by a least-squares
fit to the values of the electrostatic potential originated by the
solvent molecules lying beyond the first solvation shell.16 The
details have been given elsewhere.6a,6d

The total number of charges introduced into the perturbation
Hamiltonian is about 5000.

(b) Approximate Evaluation of the Stark Component. A
very simple formula to evaluate the magnitude of the Stark
component can be obtained if we represent the solute charge
distribution by a dipole moment. In this case, the electrostatic
solute-solvent interaction energy is

whereE is the electric field generated by the solvent in the
position occupied by the solute when the solvent is at the
configurationXi, R is the solute electronic polarizability tensor,
“:” is the double scalar product of two second-order tensors
defined asA:B ) ∑i∑j AijBij, and “X” denotes the tensor product.

The final energy is obtained by averaging over all of the
configurations:

where the brackets denote averaged values.
In MFA, we calculate the energy of the averaged solvent

configuration as

The difference between (9) and (10) yields an approximate
formula for the Stark component that is valid when the solute
charge distribution is well described by a dipole moment:

Equation 12 is obtained from eq 11 by resolving the double
scalar and the tensor product. One sees that in this expression
∆WStark is proportional to the solute polarizability and to the
fluctuations of the electric field generated by the solvent at the
position occupied by the solute.

III. Details of the Calculations

We studied two types of systems, pure liquids and solutions.
As examples of liquids, we considered methanol, ethanol, and
propanol, and as examples of solutions, we considered form-
aldehyde, acetaldehyde, and acetone in aqueous solution. In all
these cases, there are strong hydrogen bond interactions.

In the three pure liquid systems, the geometries were taken
from Jorgensen et al.12 and the basis set used was the aug-cc-
pVDZ from Dunning et al.13 This basis set yields values for

W(Xi) ) µ0E(Xi) + 1/2(RE(Xi))E(Xi) )

µ0E(Xi) + 1/2R:[E(Xi)XE(Xi)] (8)

〈W〉 ) µ0〈E〉 + 1/2R:〈EXE〉 (9)

W ) (µ0 + 1/2R〈E〉)〈E〉 ) µ0〈E〉 + 1/2R:〈E〉X〈E〉 (10)

∆WStark) 1/2R:(〈EXE〉 - 〈E〉X〈E〉) (11)

)
1

2
∑

i
∑

j

Rij(〈EiEj〉 - 〈Ei〉〈Ej〉) (12)

H ) HQM + HMM +HQM/MM (2)

(HQM + HQM/MM)|Ψ〉 ) E|Ψ〉 (3)

ĤQM/MM ) HQM/MM
elect + HQM/MM

vdw (4)

ĤQM/MM
elect ) ∫dr F̂‚V̂S(r; Xi) (5)

〈A〉 )
1

N
∑
i)1

N

A(Xi) (6)

ĤQM/MM
elect ) ∫dr F̂‚〈V̂S(r)〉 (7)
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the in vacuo dipole moment and polarizability close to the
experimental values (see Table 1). The dipole moments are
overestimated by about 0.1 D, and the polarizabilities are
underestimated by about 3 au. The experimental trends of
decreasing dipole moments and increasing polarizabilities with
the size of the alkyl groups are well reproduced. Wave functions
and energies were calculated at Hartree-Fock (HF) level, and
second-order Møller-Plesset (MP2) perturbation theory cor-
rections to the energy (PTE) were added when indicated.

For formaldehyde,14 acetaldehyde,15 and acetone,16 the ex-
perimental geometries and generally contracted basis sets of the
atomic natural orbital (ANO) type17 were used. The latter were
obtained from 14s9p4d/8s primitive sets and contracted to
4s3p1d/2s. For each molecule, a Hartree-Fock (HF) calculation
was first performed. The corresponding orbitals were used as
starting orbitals in the subsequent CASSCF (complete active
space self-consistent field) calculations. The active space is
spanned by all of the configurations arising from six valence
electrons in four orbitals. Table 2 gives the in vacuo dipole
moments and polarizabilities for these molecules. The dipole
moments are very well reproduced, but the polarizabilities are
underestimated.

All of the quantum calculations were performed using the
Gaussian 94 package.18

The MD calculations were performed using the program
MOLDY.19 In each case 128 (alcohols) or 215 (carbonyls)
molecules were simulated at fixed intramolecular geometry by
combining Lennard-Jones interatomic interactions12,20 with
electrostatic interactions. In the carbonyl-water system, the 214
solvent molecules were simulated by the TIP3P21 model at fixed
intramolecular geometry. Periodic boundary conditions were
applied, and spherical cutoffs were used to truncate the
molecular interactions at 9.0, 11.5, and 12.5 Å for methanol,
ethanol, and propanol, respectively, and 9 Å for formaldehyde,
acetaldehyde, and acetone. A time step of 0.5 fs was used. The
electrostatic interaction was calculated with the Ewald method.22

The temperature was fixed at 298 K by using a Nose´-Hoover23

thermostat. Each simulation of the self-consistent process was
run for 150 000 time steps (50 000 equilibration, 100 000
production). The solute and solvent coordinates were dumped
at every 100 or 1000 steps for further analysis.

Once the different solvent configurations have been obtained,
we calculate the solute-solvent interaction energy in the two
ways indicated above. In the first, we perform a quantum
calculation for each of theN solvent configurations and obtain
N values of the interaction energy and the dipole moment. Next,
the mean value is obtained (values in brackets). In the second

type of calculation, from theN configurations, we obtain the
averaged potential, ASEP, which is then introduced into the
solute molecular Hamiltonian. By solving the Schro¨dinger
equation, we get the values of the interaction energy and dipole
moment in the mean field approximation.

IV. Results

Let us begin by analyzing the effect of the number of
configurations used to calculate the averages on the values of
the desired properties. Table 3 gives the results for methanol.
It is necessary to clarify that, independent of their number, the
configurations were chosen so as to span the complete time of
the simulation, 50 ps. With 50 configurations (and hence 50
quantum calculations) the error (when compared with the 1000
configuration value) is only 0.3 kcal/mol in the energy and 0.01
D in the dipole moment. With 100 configurations, the errors
decrease to 0.06 kcal/mol and 0.00 D, respectively. With 200
configurations the results have almost converged. It is evident
that if the chosen configurations are uncorrelated,24 as is the
case, the results should converge very quickly. A very small
number of configurations is enough to obtain an adequate
description of the average properties of the system. The results
do not depend on the particular set of configurations used as
long as they span the same simulation time (different sets yield
interaction energies that differ by less than 0.15 kcal/mol). The
same conclusions were obtained by Coutihno et al.24 in a study
of the solvatochromic shifts of the lowest transition of benzene
in several solvents. Because of the small magnitude of the errors
obtained with 100 configurations, and in order to save compu-
tational time, in the rest of the paper the mean values are
calculated by averaging over 100 configurations.

The results showed larger variations when different time
windows were used to calculate the averages. For instance, in
methanol, variations of about 3 kcal/mol in the electrostatic
interaction energy can be found if the averages are calculated
taken different windows of 5.0 ps (see Table 4). For the dipole
moments, the differences can be 0.2 D. As expected, these
fluctuations in the mean values decrease when we increase the
size of the time window. From the results given in Tables 3
and 4, one can conclude that, to obtain good averaged values,
more important than including many configurations is to choose
the configurations so as to span the largest possible time interval.

TABLE 1: In Vacuo Dipole Moments and Polarizabilities of
the Methanol, Ethanol, and Propanol Moleculesa

µ0 R0 µ0(exp)26,27 R0(exp)28,29

methanol 1.81 19.52 1.70 21.79
ethanol 1.72 31.00 1.68 34.48
propanol 1.65 42.12 1.55 45.49

a Dipole moments are in debyes. Polarizabilities are in au.

TABLE 2: In Vacuo Dipole Moments and Polarizabilities of
the Formaldehyde, Acetaldehyde, and Acetone Moleculesa

µ0 R0 µ0(exp) R0(exp)

formaldehyde 2.35 14.40 2.36b 16.53c

acetaldehyde 2.76 25.38 2.75d 31.04c

acetone 2.90 35.58 2.93e 42.52f

a Dipole moments are in debyes. Polarizabilities are in au.b Refer-
ence 30.c Reference 29.d Reference 31.e Reference 32.f Reference 33.

TABLE 3: Interaction Energy (in kcal/mol) and Dipole
Moment (in debyes) of a Methanol Molecule in the Liquid
State as a Function of the Number of Configurations
Included in the Calculation of the Averagea

N configurations 〈E〉 〈µ〉 N configurations 〈E〉 〈µ〉
50 -19.28 2.47 333 -19.02 2.46

100 -19.07 2.46 500 -19.01 2.46
200 -19.02 2.46 1000 -19.01 2.46
250 -19.02 2.46

a Results obtained at the Hartree-Fock level.

TABLE 4: Interaction Energy (in kcal/mol) and Dipole
Moment (in debyes) of a Methanol Molecule in the Liquid
State as a Function of the Time Window Chosen to
Calculate the Averagea

interval
(ps) 〈E〉 〈µ〉

interval
(ps) 〈E〉 〈µ〉

interval
(ps) 〈E〉 〈µ〉

0:5 18.95 2.41 20:25 18.73 2.48 35:40 20.13 2.49
5:10 18.78 2.44 25:30 19.26 2.50 40:45 20.64 2.52

10:15 17.44 2.39 30:35 20.79 2.56 45:50 17.59 2.38
15:20 17.86 2.46

a Results obtained at the Hartree-Fock level.
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We shall next analyze the validity of the MFA. Table 5 gives
the values of the Stark energy for the liquid alcohols. For
methanol, the results are for 1000 and 100 configurations. For
ethanol and propanol, only 100 configurations were used. The
Stark energy ranges between 0.3 and 0.8 kcal/mol, representing
less than 5% in all of the cases. The differences in dipole
moments are even lower: 0.01-0.02 D representing 0.4-1%.
The inclusion of the electron correlation decreases the interaction
energy, a fact already found in studies performed with con-
tinuum models,25 but has very little effect on the value of the
Stark component, which is unchanged or slightly lower.

Table 6 gives the values calculated for the Stark component
in solutions of carbonyl compounds in liquid water. The
properties are calculated now at the MCSCF level and with a
basis set of ANO quality. The trend is very similar to that found
for the alcohols: differences less than 4% in the energies and
then 0.02 D in the dipole moments.

In sum, for all the systems considered and independent of
the level of calculation (HF, MP2, or MCSCF), the Stark
component ranges between 0.2 and 0.8 kcal/mol, with percent-
ages representing 1.5 and 4.5%, respectively. It is clear that the
Stark energy represents a very small part of the solute-solvent
interaction energy. The behavior of the MFA is even better in
the prediction of the molecular properties where the errors are
less than 0.02 D (1%). As a consequence, one can conclude
that, for the present systems, MFA is a very good approximation
that does not introduce significant errors either in the energy
or in molecular properties, and that permits a notable saving of
computation time.

Although the values of the solute polarizabilities given in
Tables 1 and 2 range between 14 and 36 au3, the magnitude of
the Stark component, Tables 3 and 4, is almost constant and
independent of the system or method of calculation. From eq
11, it is clear that the Stark component is proportional to the
polarizability of the solute molecule, so that in principle, an
increase in polarizability should be followed by an increase in
the Stark energy. However, for a given series of compounds,
alcohols for instance, increasing polarizability is associated with
the increase in the size of the alkyl group. Because of volume
effects of these groups, the solvent reaction field decreases as

also do its fluctuations. These two factors, polarizability and
electric field fluctuations, seem to mutually compensate, result-
ing in values of the Stark component that are almost independent
of the polarizability.

Last, Table 7 presents the values obtained for the Stark
component when the approximate formula, eq 11, was used. In
general, the approximate values are one-half the exact values.
The reason is that eq 11 neglects the effect of terms of higher
order than the dipole. If the Stark component obtained with the
approximate formula is added to the mean field value,EMFA,

the difference from the true energy,〈E〉, reduces to 0.35-0.1
kcal/mol, representing less than 1.5%. These results, together
with the small differences found in the dipoles, 0.02 D (≈ 1%),
are evidence for the validity of the mean field approximation
in the study of molecules in solution.

V. Conclusions

The use of the mean field approximation has become standard
in solvent effect theories. Its main advantage is that it requires
notably fewer quantum calculations. The cost to pay is the loss
of any information associated with the fluctuations of the solvent
electric field. Furthermore, it is not clear to what extent the mean
energy of different solute-solvent configurations can be
replaced by the energy of an averaged configuration. In this
work, we have shown that, for all of the systems studied, the
mean field approximation introduces only small errors in the
interaction energies, and negligible differences in dipole mo-
ments. We found that, independent of the system studied, the
Stark component is close to 0.5 kcal/mol, a value that can be
neglected when compared with the rest of the approximations
(neglect of intermolecular electron exchange, parametrization
of the Lennard-Jones potential, etc.) introduced in most QM/
MM methods. Furthermore, the small errors in the energy
introduced by this approximation can easily be corrected through
the use of the approximate formula, eq 11, whose behavior is
very good, especially given that is a very easy and rapid way
to obtain an estimate of the Stark component.

Acknowledgment. This research was sponsored by the
Dirección General de Investigacio´n Cientı́fica y Técnica (Project
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1994, 224, 291. (f) Tuñón, I.; Martins-Costa, M. T. C.; Millot, C.; Ruiz-
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(33) Stuart, H. A.Landolf-Börrnstein Zahlenwerte und Funktionen;

Euclen, A., Hellwege, K. H., Eds.; Springer-Verlag: Berlin, 1951; Vol 1,
Part 3, p 511.

Theoretical Calculation of the Stark Component J. Phys. Chem. B, Vol. 106, No. 18, 20024817


