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Validity of the Mean Field Approximation in the Study of Liquids and Solutions
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We examine the Stark component of the sotgelvent interaction energy and check the validity of the

mean field approximation (MFA) in the theoretical study of liquids and solutions. We considered two types

of systems: methanol, ethanol, and propanol liquids and formaldehyde, acetaldehyde, and acetone in aqueous
solution. We found that, independent of the level of calculation (HF, MP2, or MCSCF), the errors introduced

by MFA are less than 5% in the interaction energy and less than 1% in the dipoles. We propose an approximate
expression for the Stark component that reduces the errors in the interaction energy to below 1.6%.

I. Introduction reaction factors evaluated at zero and optical frequencies:

Many of the most frequently used methods for the study of 1
solvent effect_s make use of the mean field _approxmatlon AWgp iy = — —KgT Zzalk[glk(eo) — gy le)] (1)
(MFA). The different quantum versions of continuum models 2
(SCRF! PCM2 multipole expansion,etc.) or the methods
based on Langevin dipoltare representative examples. In all whereKg is the Boltzmann constari, is the absolute temper-
these methods, the solute is represented quantum mechanicallyature, oy is thelk component of the solute polarizability tensor,
whereas the solvent response is described classically throughand gy is the Ik component of the Onsager factor tensor
very simplified models that completely neglect the microscopic evaluated at zero and optical frequencies. Like the rest of the
structure of the solvent and the possible presence of specificexpressions based on continuum theories, eq 1 neglects the
interactions. Because of this, several methods have beeneffects of the microscopic structure of the solvent and of the
proposed in the past decade that combine MFA with a detailed specific interactions. Furthermore, a value has to have been
description of the solvent structure obtained either from integral assigned to the cavity radius that holds the solute molecule,
theories, the reference interaction site method in the case ofand this is not always eag{°
RISM/HF? or from simulations, when the averaged solvent  As was indicated above, the ASEP/MD théboombines
electrostatic potential/molecular dynamics method, ASEPAVID, MFA with MD calculations and, hence, does not suffer from
is used. the limitations of continuum models. We here use this theory

In MFA-based methods, the energy and wave function of the to evaluate the Stark component calculated as the difference
solute molecule are obtained in the presence of the averagedetween the solutesolvent interaction energy when the MFA
perturbation generated by the solvéhThe main advantage of  is used and when it is not. Our aim is 2-fold. First, we shall
this approximation is that it notably reduces the number of evaluate the Stark component for a few representative systems.
quantum calculations. For instance, whereas in traditional This is an important preliminary step because the validity of
quantum mechanics/molecular mechah{€M/MM) methods the MFA-based theories depends on the supposition that this
(where MFA is not used), it is necessary to perform one quantum component remains small. Second, we shall show how an
calculation for each chosen solvent configuration, ASEPIMD estimate of this component can easily be obtained from
or RISM/HF require only 3-10 quantum calculations depend- knowledge of the solvent electric field fluctuations at the
ing on the number of cycles needed to reach convergence. position occupied by the solute.

As with any other approximation, MFA introduces errorsinto ~ The rest of the paper is organized as follows. In sections |I
the evaluation of the solutesolvent interaction energy and the ~and Ill, we detail the method that we follow in the determination
solute properties. These errors are associated with the neglecPf the magnitude of the Stark component and present an
of the correlation between the motion of the solvent nuclei and @Pproximate expression that permits a rapid evaluation of this
the response of the solute electron polarizability; that is, MFA component. Section IV presents the results for various hydrogen-
does not allow the solute to polarize in response to a change inPonded systems using several levels of calculations. Section V
the solvent nuclear configuration. This correlation energy is Presents our conclusions.
usually known as the Stark componéfit.

Despite the extended use of MFA in solvent effect theories, Il. Methods
few studies have focused on the evaluation of the Stark (&) Direct Determination of the Stark Component.For a
component. Linde?,and later Karlstrom and Halfeproposed direct determination of the magnitude of the errors introduced
expressions for this component based on continuum models. Inby the MFA, we have to compare a full calculation of the energy
both cases, the magnitude of the Stark component was relatecand properties of a solute molecule in solution with the result
to the solute polarizability and the difference between the dipole when the MFA is introduced.
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We use a QM/MM method to obtain the solute wave function
in solution. The solvent effect theory involving coupling between

Sanchez et al.

In our case, we obtain the solvent configuration from MD,
and the ASEP is represented by a set of point charges chosen

a quantum and a classical system has been widely disclissed.in the following way.

For clarity, we shall summarize the main points of the
implementation of the method.
The Hamiltonian model is partitioned in the usual way:

)

with terms that correspond to the quantum pa&tgw, the
classical partHuwv, and the interaction between theRymmm.
In our case, the quantum part is formed by the solute molecule

H = Hgw + Huw THommm

1. We include the charges belonging to solvent molecules
that, in any of the MD configurations, lie within a sphere of
radiusR chosen in such a way that it includes the first solvation
shell. The value of any charge is then divided by the number
of solvent configurations included in the calculation of the
ASEP.

2. Next, a second set of charges is obtained by a least-squares
fit to the values of the electrostatic potential originated by the
'solvent molecules lying beyond the first solvation shglfhe

whereas the classical part includes all of the solvent molecules. yatails have been given elsewh&réd

The energy and wave function of the solvated solute molecule

are obtained by solving the effective StHimger equation for
each configuration:

(Hom + Hommm) 'WE= EJWD ®)
The interaction termiHommm, takes the following form:
. — el d
HQM/MM - Hg(:/ICItI\/IM + HWMM (4)
Homnaw = f dr pV(r; X) (5)

where p is the solute charge density andyr; X) is the
electrostatic potential generated at the positituy the solvent
configurationX;. If the solvent is regarded as nonpolarizable,

The total number of charges introduced into the perturbation
Hamiltonian is about 5000.

(b) Approximate Evaluation of the Stark Component. A
very simple formula to evaluate the magnitude of the Stark
component can be obtained if we represent the solute charge
distribution by a dipole moment. In this case, the electrostatic
solute-solvent interaction energy is

W(Xi) = ﬂoE(Xi) + l/ z(aE(Xi))E(Xi) =
(%) + o [E(X)®E(X)] (8)

whereE is the electric field generated by the solvent in the
position occupied by the solute when the solvent is at the
configurationX;, o is the solute electronic polarizability tensor,

then this potential is nothing more than the electrostatic potential “:” is the double scalar product of two second-order tensors
generated by the charges that represent the solvent moleculeslefined asA:B = Y ;5; A;jBj, and ®” denotes the tensor product.

during the simulation. If the solvent is polarizable, we have also
to include the contribution from the induced dipoles. The term

Hgw is the Hamiltonian for the van der Waals interaction,

which is generally represented by a Lennard-Jones potential.

Schralinger's equation has to be solved for each point of
configuration space, usually by sampling through molecular
dynamics or Monte Carlo simulatiof.

The final energy is obtained by averaging over all of the
configurations:

W= o EH Y00 EQED 9)

where the brackets denote averaged values.
In MFA, we calculate the energy of the averaged solvent

The desired properties are then obtained by averaging overconfiguration as

the N solvent configurations

1 N
E\D=N A(X)

(6)

where the differenfA(X;) values are obtained from the solute
wave function,W(X), calculated in the presence of the solvent
configurationX;.

On the contrary, in MFA, one averages the solvent perturba-

. Melect .
tion, Hovmm

“elect
HQM/MM

= [dr p-Vg(n)D @)

where the brackets denote a statistical average. Theligym

is usually known as the averaged solvent electrostatic potentia

W= (uy + Yo EQEC= u [ECH Y,0c[E®ED (10)

The difference between (9) and (10) yields an approximate
formula for the Stark component that is valid when the solute
charge distribution is well described by a dipole moment:

AWgin = 1,00 ((EQE- [E[®EL) (11)

1
EZZ oy (B - [ [ ) (12)
T T

Equation 12 is obtained from eq 11 by resolving the double
scalar and the tensor product. One sees that in this expression
|AWstark is proportional to the solute polarizability and to the

(ASEP). Substituting (7) into (4) and (3), we obtain the energy, fluctuations of the electric field generated by the solvent at the

Ewmra, and wave functiontPvea, of the solute in the presence

of the averaged solvent configuration. The obvious advantage

of this approximation is that only one quantum calculation has

position occupied by the solute.

I1l. Details of the Calculations

to be performed. The Stark component is then calculated as the We studied two types of systems, pure liquids and solutions.
difference between the energies obtained with eqs 6 and 7, thatAs examples of liquids, we considered methanol, ethanol, and

iS, Wstark = [EO— Ewra.

Different mean field models can be obtained if we vary the
description of the solutesolvent interaction term (point charges,
point chargest polarizabilities, multipole expansion, pseudo-
potentials, etc.) or the way in which the different solvent
configurations are obtained (MD, MC, integral theories, etc.)

propanol, and as examples of solutions, we considered form-
aldehyde, acetaldehyde, and acetone in agqueous solution. In all
these cases, there are strong hydrogen bond interactions.

In the three pure liquid systems, the geometries were taken
from Jorgensen et af.and the basis set used was the aug-cc-
pVDZ from Dunning et al® This basis set yields values for
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TABLE 1: In Vacuo Dipole Moments and Polarizabilities of TABLE 3: Interaction Energy (in kcal/mol) and Dipole
the Methanol, Ethanol, and Propanol Moleculed Moment (in debyes) of a Methanol Molecule in the Liquid
0 o o(expfo? o(expy®?° State as a Function of the Number of Configurations
" « uexp a’(exp Included in the Calculation of the Averaget
methanol 181 19.52 1.70 21.79 - - ' -
ethanol 172 31.00 168 34.48 N configurations  [EO 40 N configurations  [EQ @O
propanol 1.65 42.12 1.55 45.49 50 —19.28 2.47 333 —19.02 2.46
. . R . 100 —19.07 2.46 500 —19.01 2.46
aDipole moments are in debyes. Polarizabilities are in au. 200 —19.02 2.46 1000 ~19.01 2.46
TABLE 2: In Vacuo Dipole Moments and Polarizabilities of 250 ~19.02 246
the Formaldehyde, Acetaldehyde, and Acetone Moleculgs 2 Results obtained at the HartreBock level.
0 0 0, 0,

“ « #exp) a’(exp) TABLE 4: Interaction Energy (in kcal/mol) and Dipole
formaldehyde 2.35 14.40 286 16.53 Moment (in debyes) of a Methanol Molecule in the Liquid
acetaldehyde 2.76 25.38 2975 31.04 State as a Function of the Time Window Chosen to
acetone 2.90 35.58 2.93 4252 Calculate the Averagé
aDipole moments are in debyes. Polarizabilities are in"defer- interval interval interval

ence 30° Reference 29 Reference 31¢ Reference 32.Reference 33. (ps) [ED GO (ps) [EOD @0 (ps) [ED [0

0:5 18.95 241 20:25 18.73 2.48 35140 20.13 2.49

the in vacuo dipole moment and polarizability close to the 5:10 1878 2.44 25:30 19.26 250 40:45 20.64 2.52
experimental values (see Table 1). The dipole moments are 10:15 17.44 239 30:35 20.79 2.56 4550 17.59 2.38
overestimated by about 0.1 D, and the polarizabilities are 15:20  17.86 2.46
underestimated by about 3 au. The experimental trends of 2Results obtained at the HartreBock level.
decreasing dipole moments and increasing polarizabilities with
the size of the alkyl groups are well reproduced. Wave functions type of calculation, from thé configurations, we obtain the
and energies were calculated at Hartr€eck (HF) level, and averaged potential, ASEP, which is then introduced into the
second-order MgllerPlesset (MP2) perturbation theory cor- solute molecular Hamiltonian. By solving the Sttiireger
rections to the energy (PTE) were added when indicated. equation, we get the values of the interaction energy and dipole

For formaldehydé# acetaldehydé and acetoné® the ex- moment in the mean field approximation.
perimental geometries and generally contracted basis sets of the
atomic natural orbital (ANO) typgé were used. The latter were  1V. Results
obtained from 14s9p4d/8s primitive sets and contracted to
433p1d/25. For each molecule, a HarﬁfEeck (HF) calculation configurations used to calculate the averages on the values of
was ,f'rSt pe.rform.ed. The corresponding orbitals were USEd_aSthe desired properties. Table 3 gives the results for methanol.
starting orbitals in the subsequent CASSCF (complete active i iq hecessary to clarify that, independent of their number, the
space self-consistent field) calculations. The active space is.,nfigyrations were chosen so as to span the complete time of
spanned by all of the configurations arising from six valence he gimylation, 50 ps. With 50 configurations (and hence 50
electrons in four orpltals: .Table 2 gives the in vacuo d'F’Ole guantum calculations) the error (when compared with the 1000
moments and polarizabilities for these molecules. The dipole ;g ration value) is only 0.3 kcal/mol in the energy and 0.01
moments are very well reproduced, but the polarizabilities are i, the dipole moment. With 100 configurations, the errors
underestimated. ) _ decrease to 0.06 kcal/mol and 0.00 D, respectively. With 200

All of the quantum calculations were performed using the configurations the results have almost converged. It is evident
Gaussian 94 packagg. that if the chosen configurations are uncorrel&feds is the

The MD calculations were performed using the program case, the results should converge very quickly. A very small
MOLDY.!® In each case 128 (alcohols) or 215 (carbonyls) number of configurations is enough to obtain an adequate
molecules were simulated at fixed intramolecular geometry by description of the average properties of the system. The results

Let us begin by analyzing the effect of the number of

combining Lennard-Jones interatomic interactiéi$ with do not depend on the particular set of configurations used as
electrostatic interactions. In the carbonyater system, the 214 |ong as they span the same simulation time (different sets yield
solvent molecules were simulated by the TIP3Rodel at fixed interaction energies that differ by less than 0.15 kcal/mol). The

intramolecular geometry. Periodic boundary conditions were same conclusions were obtained by Coutihno &t al.a study
applied, and spherical cutoffs were used to truncate the of the solvatochromic shifts of the lowest transition of benzene
molecular interactions at 9.0, 11.5, and 12.5 A for methanol, in several solvents. Because of the small magnitude of the errors
ethanol, and propanol, respectivelydeéhA for formaldehyde, obtained with 100 configurations, and in order to save compu-
acetaldehyde, and acetone. A time step of 0.5 fs was used. Thaational time, in the rest of the paper the mean values are
electrostatic interaction was calculated with the Ewald method. calculated by averaging over 100 configurations.
The temperature was fixed at 298 K by using a Nbe@ver? The results showed larger variations when different time
thermostat. Each simulation of the self-consistent process waswindows were used to calculate the averages. For instance, in
run for 150 000 time steps (50 000 equilibration, 100 000 methanol, variations of about 3 kcal/mol in the electrostatic
production). The solute and solvent coordinates were dumpedinteraction energy can be found if the averages are calculated
at every 100 or 1000 steps for further analysis. taken different windows of 5.0 ps (see Table 4). For the dipole
Once the different solvent configurations have been obtained, moments, the differences can be 0.2 D. As expected, these
we calculate the solutesolvent interaction energy in the two  fluctuations in the mean values decrease when we increase the
ways indicated above. In the first, we perform a quantum size of the time window. From the results given in Tables 3
calculation for each of thél solvent configurations and obtain  and 4, one can conclude that, to obtain good averaged values,
N values of the interaction energy and the dipole moment. Next, more important than including many configurations is to choose
the mean value is obtained (values in brackets). In the secondthe configurations so as to span the largest possible time interval.
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TABLE 5: Interaction Energy, Stark Component (in TABLE 7: Polarizability (in au), Electric Field Fluctuation
kcal/mol), and Dipole Moment (in debyes) of Alcohols in the (in au), and Comparison between the Values of the Stark
Liquid State Calculated as a Mean Value [ECand [g0) or Component Calculated Exactly,AWsk, (kcal/mol) and with
with the Mean Field Approximation (Eyra and gwea) the Approximate Formula, eq 11
(ED Evra Westark ml:l UMFA MD— UMFA AWstark

E a [E2- [ECA10°  AWswk  (eq 11)
methanol 1000—19.0 —18.6 0.4 (2.1%) 2.46 2.45 0.01 (0.4%) methanol 1000  19.45 3.87 0.44 0.20
methanol 100 —19.1 —18.7 0.4 (2.1%) 2.46 2.45 0.01 (0.4%) methanol 100 19.45 4.10 0.40 0.20
ethanol 100 —16.5 —16.0 0.5(3.0%) 2.27 2.25 0.02 (0.9%) ethanol 31.00 2.77 0.51 0.25
propanol 100 —14.3 —14.0 0.3(2.1%) 2.15 2.13 0.02 (0.9%) propanol 42.11 1.15 0.29 0.15

P2 aceildehyds 2528 324 04 025
methanol 1000 —18.3 —17.9 0.4 (2.2%) acetaldehyde : - : :
methanol 100 —18.3 —17.9 0.4 (2.2%) acetone 35.58 4.18 0.78 0.45
ethanol 100 —15.8 —15.4 0.4 (2.5%)
propanol 100 —13.7 —13.5 0.2 (1.5%) also do its fluctuations. These two factors, polarizability and

electric field fluctuations, seem to mutually compensate, result-

TABLE 6: Interaction Energy, Stark Component (in ing in values of the Stark component that are almost independent

kcal/mol), and Dipole Moment (in debyes) of Carbonyl

Compounds in Aqueous Solution Calculated as a Mean of the polarizability. _

Value ((ECand [40) or with the Mean Field Approximation Last, Table 7 presents the values obtained for the Stark

(Emra and pvira) component when the approximate formula, eq 11, was used. In
ED  Ewen  Weak &0 awea GO fwea general, the approximate values are one-half the exact values.

CASSCF/ANO The reason is that eq 11 neglects the effect of terms of higher
formaldehyde —9.2 —8.8 0.4(4.3%) 2.99 2.99 0.00(0.0%) order than the dipole. If the Stark component obtained with the
acetaldenyde —8.9 -85 0.4(4.5%) 3.46 3.46 0.00(0.0%) approximate formula is added to the mean field valgsa,
acetone —-21.9 —21.1 0.8(3.6%) 4.48 4.47 0.01(0.2%) the difference from the true energigl] reduces to 0.350.1

kcal/mol, representing less than 1.5%. These results, together

We shall next analyze the validity of the MFA. Table 5 gives with the small differences found in the dipoles, 0.0291%),
the values of the Stark energy for the liquid alcohols. For are evidence for the validity of the mean field approximation
methanol, the results are for 1000 and 100 configurations. Forin the study of molecules in solution.
ethanol and propanol, only 100 configurations were used. The
Stark energy ranges between 0.3 and 0.8 kcal/mol, representing/. Conclusions
less than 5% in all of the cases. The differences in dipole
moments are even lower: 0.60.02 D representing 0:-41%.

The inclusion of the electron correlation decreases the interaction
energy, a fact already found in studies performed with con-
tinuum model$? but has very little effect on the value of the
Stark component, which is unchanged or slightly lower.

Table 6 gives the values calculated for the Stark component
in solutions of carbonyl compounds in liquid water. The
properties are calculated now at the MCSCF level and with a
basis set of ANO quality. The trend is very similar to that found
for the alcohols: differences less than 4% in the energies and
then 0.02 D in the dipole moments.

In sum, for all the systems considered and independent of
the level of calculation (HF, MP2, or MCSCF), the Stark
component ranges between 0.2 and 0.8 kcal/mol, with percent-
ages representing 1.5 and 4.5%, respectively. It is clear that th
Stark energy represents a very small part of the selstévent
interaction energy. The behavior of the MFA is even better in
the prediction of the molecular properties where the errors are
less than 0.02 D (1%). As a consequence, one can conclud
that, for the present systems, MFA is a very good approximation
the}t does not introducg significant errors either in the energy  acknowledgment. This research was sponsored by the
orin molgculqr properties, and that permits a notable saving of pireccion General de InvestigaaicCientfica y Tecnica (Project
computation time. No. BQU2000-0243) and by the Conséjerde Educacio

Although the values of the solute polarizabilities given in  ciencia Y Tecnolo@ de la Junta de Extremadura (Project No.
Tables 1 and 2 range between 14 and 3% tne magnitude of 2PR0O1A010).

the Stark component, Tables 3 and 4, is almost constant and

independent of the system or method of calculation. From eq References and Notes
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