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An extended version of the averaged solvent electrostatic potential from molecular dynamics data (ASEP/
MD) method oriented to the study of the solvent effects on internal conversion and intersystem crossing
processes is presented. The method allows for the location of crossing points between free energy surfaces
both in equilibrium and in frozen solvent conditions. The ground and excited states of the solute molecule
are described at the complete active space self-consistent field (CASSCF) level while the solvent structure is
obtained from molecular dynamics simulations. As an application, we studied the nonradiative de-excitation
of s-trans-acrolein1(n f π*) in aqueous solution. We found that the solvent modifies the relative stability
of the different crossing points but not enough as to alter the relative order of stability with respect to the in
vacuo situation. The relaxation through an equilibrium path involves a strong solvent reorganization. On the
contrary, the nonequilibrium path does not involve solvent motion and the de-excitation could proceed with
the same speed as in vacuo.

I. Introduction

It is well-known that solvent effects play a fundamental role
in chemistry. The solvent affects the kinetics and thermodynam-
ics of chemical reactions, modifying the nature and ratio of the
products, it also modifies the appearance of spectra, shifting
the position of bands or modifying their intensities. In the past
decades, much effort has been dedicated to the development of
models allowing the study of solvent effects on chemical
equilibrium and reactions and molecular spectra. Comparatively,
less attention has been paid, however, to the study of solvent
effects on the evolution and reactivity of molecules in excited
states, that is, photophysical and photochemical processes. The
reasons are obvious, to the difficulties inherent to the study of
nonadiabatic processes1,2 (processes that imply more than one
potential energy surface) in vacuo, one must add the complica-
tions associated to the presence of a solvent, that is, the existence
of a manifold of configurations thermally accessible that must
be included to obtain statistically significant results and the great
number of solvent molecules that interact with the solute
molecule.

One can distinguish two basic types of crossing points
between potential energy surfaces: conical intersection (CI) if
the crossing is between states with the same spin symmetry,
giving rise to internal conversion (IC) processes, or singlet-
triplet crossing (STC), for instance, if the states have different
spin symmetry, and this leads to intersystem crossing (ISC).
The work developed by the groups of Yarkony,3 Ruedenberg
et al.,4 and Robb et al.5 has shown that CI and STC are a very
common feature of potential energy surfaces. As a result of that,
presently, one can use techniques and algorithms that permit
the determination of those geometries for which CI and STC
appear for in vacuo systems. The extension of these techniques
to in-solution systems is not easy because the methods must
permit (a) the inclusion of the solvent effects on the energy,

wave functions, and gradients (ground and excited states,
derivative coupling) of the solute used by the CI and STC
searching algorithms in solution and (b) the calculation of the
free energy differences between the different structures (CI,
STC, minima, Franck-Condon (FC) points) involved in the
photochemical process.

Furthermore, in solution, there exists a subtle interplay
between the dynamics of the solvent and the time evolution of
the excited state. A photochemical process begins usually with
the excitation from the minimum energy configuration of the
ground state to the Franck-Condon point on the excited-state
free energy surface. In solution, in the FC point, the solvent is
in a nonequilibrium situation, that is, the solvent structure
corresponds to the equilibrium with the solute ground state and
not with the actual solute charge distribution in the excited state.
As time goes on, the solvent modifies its structure, and after a
long enough time, it becomes equilibrated with the charge
distribution of the solute excited state. In the photochemistry
of in-solution systems, we can hence define two limiting
situations depending on whether the solvent is in an equilibrium
or nonequilibrium situation. Most theoretical models proposed
to date have considered nonequilibrium solvation. The consid-
eration of nonequilibrium solvation is motivated by the fact that
most radiationless relaxations take place on the femtosecond
time scale, a scale in which, probably, the solvent equilibration
is not complete. However, in systems where the geometry of
the CI or STC points involved in the photochemical process
are very different from the FC point, the reaction will take place
only after a great part of the solvent reorganization has occurred.

A few recent studies have proposed methods to include
solvent effects in the study of IC processes. Burghardt et al.,6,7

for instance, use continuum methods to study IC in solution;
these authors introduce an explicit coordinate for the solvent,
which permits them to study the solvation dynamics during the
internal conversion process. Methods that permit a more detailed
description of the solvent have also been proposed; therefore,* Corresponding author. E-mail: maguilar@unex.es.
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in a recent paper, Yamazaki and Kato8 use the RISM-SCF
method for describing the solvent dynamics during energy
surface crossing in ethylene and CH2NH2

+ in polar solvents.
Finally, several groups9-11 have used quantum mechanics/
molecular mechanics (QM/MM) methods to locate CI generally
in nonequilibrium conditions, that is, for a frozen solvent
structure.

In this paper, we present an extension of a sequential QM/
MM method that permits us to locate and describe the energetic
and geometrical properties of unavoided crossings of potential
energy surfaces in solution both in equilibrium and in nonequi-
librium conditions. The proposed method is an extension to the
case of solvated molecules of an algorithm due to Bearpark et
al.12 The method is valid for all types of crossings and combines
a high level ab initio quantum-mechanical description of the
solute with a detailed description of the solvent obtained through
molecular dynamics (MD) simulations.

We apply the proposed method to the study of the different
ICs and ISCs involved in the radiationless relaxation of s-trans-
acrolein. Acrolein or propenal is the smallestR,â-unsaturated
carbonyl compound. The interaction between the carbonyl group
and the CdC double bond makes it a compound of marked
interest from a spectroscopic and photochemical point of view.
Furthermore, it has been shown that it can form several hydrogen
bonds with the water molecules, a situation where the employ-
ment of simplified solvent models, such as dielectric continuum
models, is not adequate. The photochemistry of this compound
has already been studied in gas-phase conditions.5a However,
to our knowledge, no intent has been done for including the
solvent effects.

The rest of the paper is organized as follows: section II
explains the algorithms to locate and characterize the CI and
STC points in solution. Section III describes the computational
details of the study. Section IV discusses the influence of the
solvent on the position and features of the different CIs and
STCs in s-trans-acrolein. Finally, section V states the main
conclusions of the study.

II. Method

In the description of the solvent effects, we used the averaged
solvent electrostatic potential from molecular dynamics data
(ASEP/MD) method13-14 developed in our laboratory. ASEP/
MD is a QM/MM effective Hamiltonian method that makes
use of the mean field approximation.13d In this approximation,
the average value of any solute property is replaced by the value
calculated in the presence of an average perturbation or
configuration. The method combines quantum mechanics (QM)
and molecular dynamics (MD) techniques, with the particularity
that full QM and MD calculations are alternated and not
simultaneous. During the MD simulations, the intramolecular
geometries and charge distributions of all molecules are
considered as fixed. From the resulting data, the average
electrostatic potential generated by the solvent on the solute is
obtained. This potential is introduced as a perturbation into the
solute’s quantum mechanical Hamiltonian, and by solving the
associated Schro¨dinger equation, one gets a new charge
distribution for the solute, which is used in the next MD
simulation. The iterative process is repeated until the electron
charge distribution of the solute and the solvent structure around
it are mutually equilibrated. The main characteristics of the
method have been described elsewhere.13-14 Here, we shall
detail only some points pertinent to the current study.

In ASEP/MD the energies,E, and electronic wave functions,
Ψ, of the solute molecule in presence of the average perturbation

generated by the solvent are obtained by solving an effective
Schrödinger equation

whereĤQM is the “in vacuo” solute molecular Hamiltonian and
where the solute-solvent interaction term,ĤQM/MM takes the
following form:

whereF̂ is the solute charge density operator and the brackets
denote a statistical average. The term〈VS(r;F)〉 is the averaged
electrostatic potential generated by the solvent at the positionr
and is obtained from MD calculations where the solute molecule
is represented by the charge distributionF and a geometry fixed
during the simulation. For details about the calculation of
〈VS(r;F)〉, see ref 14. TheĤQM/MM

vdw term is the Halmiltonian for
the van der Waals interaction, in general, represented by a
Lennard-Jones potential. This term is calculated by averaging
its value over all solvent configurations selected during the MD
simulation. It depends only on the nuclear coordinates and hence
has no effect on the solute wave function, but it contributes to
the final value of the energy, gradient, and Hessian.

To locate a minimum energy crossing point, we have
combined the ASEP/MD method with an algorithm due to
Bearpark et al.,12 which permits to locate the minimum energy
point of the CI (MECI) or STC (MESTC) seam without
employing Lagrange multipliers. This algorithm simultaneously
minimizes the energy difference between the two intersecting
states and the energy of the crossing seam between the two
potential energy surfaces.10 The final form taken by the gradient
is:

here,EK and EL are the energies of the intersecting surfaces,
∇EK is the gradient of the upper state andĝKL and ĥKL are the
two versors that define the branching space org-h plane,1 that
is, the subspace of nuclear coordinates in which the degeneracy
between the two intersecting surfaces is lifted linearly in
displacements from the intersection. When the two intersecting
states have different spin symmetry as in the case of STC, the
ĥKL term vanishes, and only one coordinate defines the branching
space. The expression taken by the gradient difference vector
(gbKJ) is:

and the derivative coupling vector (hBKL):

where the gradient∇ is a vector in the nuclear space andΨ1

are the adiabatic electronic wave functions, eigenfunctions of
the electronic Hamiltonian,Ĥ, with energiesEi. The corre-
sponding versors are defined asĝKL ) gbKL/|gbKL| andĥKL ) hBKL/
|hBKL| - [(hBKL/|hBKL|)ĝKL]ĝKL.

In the definition of the gradientfBKL, eq 4, the solvent can
affect (1) the energy difference between the two statesEK and
EL, (2) the gradient of the upper excited state,∆ EK, and (3)

(ĤQM + ĤQM/MM)|Ψ〉 ) E|Ψ〉 (1)

ĤQM/MM ) ĤQM/MM
elect + ĤQM/MM

vdw (2)

ĤQM/MM
elect ) ∫ dr‚F̂‚〈VS(r;F)〉 (3)

fBKL ) 2(EK - EL)ĝKL + [∇EK - (∇EK‚ĝKL)ĝKL -
(∇EK‚ĥKL)ĥKL] (4)

gbKL ) ∇(EK - EL) (5)

hBKL ) 〈ΨK|∇|ΨL〉 (6)
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the two vectors that define the branching space,ĝKL and ĥKL.
Next, we analyze in detail the solvent influence on each one of
these terms.

(1) Energy Difference, (EK - EL).

E andΨ are obtained by solving eqs 1-3. The interaction term
is the sum of the electrostatic and van der Waals contributions.
In turn, the electrostatic contribution can be split into two
components: the interaction between solute nuclei and solvent
charges, ĤQM/MM

elect,n , and the interaction between the solute
electronic charge distribution and the solvent charges,ĤQM/MM

elect,e

In this point, we introduce the following approximation: we
suppose that the Lennard-Jones coefficients are the same for
all of the electronic states of a molecule. Furthermore, taking
into account the fact that the two statesK andL are calculated
at the same geometry, one can simplify eq 8 and obtain the
final expression for the energy difference:

The energy difference depends implicitly on the solvent through
the in-solution wavefunctionsΨK andΨL and explicitly through
the ĤQM/MM

elect,e terms.
(2) Upper State Gradient, ∇EK. In the calculation of this

gradient, we use a variant of the free energy gradient method15

described in a previous paper. The gradients at the pointr of
the free energy surfaceEK are calculated as:13d

where the brackets denote a statistical average over the solvent
configurations,X. As we can see, electrostatic and van der Waals
contribution are calculated in a different way. In the case of
the electrostatic term, the gradient is calculated as the gradient
of an averaged solvent configuration; however, the van der
Waals contribution is calculated as the averaged value of the
gradients of all solvent configurations selected.

(3) Gradient Difference (gbKL) and Derivative Coupling
(hBKL) Vectors. By differentiating eq 9, one obtains:

where the van der Waals and nuclear terms vanish because they
depend only on nuclear coordinates and hence take the same
values for all the electronic states. (Note that in those cases
where the Hellmann-Feynman theorem is applicable the last
term of the right hand side (rhs) of eq 11 vanishes because the

ĤQM/MM
elect,e operator does not depend explicitly on the nuclear

coordinates of the solute.)
In the calculation of the derivative coupling, eq 6 is used

with the solute wave function perturbed by the solvent.
The complete scheme of the process followed to locate CI

or STC points of molecules in solution using ASEP/MD is
shown in Figure 1. We begin by equilibrating the solvent and
the solute charge distribution at the ground state and getting a
set of point charges that represent the in-solution charge
distribution of the solute molecule in the ground state. In our
case, these charges are usually obtained using the CHELPG
method.16 These charges are then used as input for an MD
simulation of the solute and solvent molecules, the remaining
solute (LJ coefficients) and solvent (charges and LJ coefficients)
parameters are obtained from the literature.N representative
solvent configurations (N usually taken between 500 and 1000)
are selected from the MD simulation. From these configurations,
the averaged solvent potential, eq 3, generated by the solvent
in the volume occupied by the solute is calculated. Next, the
electronic Schro¨dinger equation, eq 1, for the solute molecule
is solved in the presence of the averaged perturbation generated
by the solvent. The energies and wave functions of the crossing
states together with the rest of terms appearing in eqs 4-11
are calculated, and the gradientfBKL is obtained. A new solute
geometry is estimated by using a quasi-Newton method. In this
point, we have two possibilities depending on whether the
solvent is in an equilibrium or frozen solvent situation. In the
former case, the solvent must be equilibrated with the solute
charge distribution of the upper state and hence a new MD must
be performed; the procedure is continued until the solvent
distribution and the charge distribution of the upper state are
mutually equilibrated. The choice of the upper state is justified
by the physical process of de-excitation, where the system
evolves in the excited-state surface and the involved crossing
points are those where the solvent is in equilibrium with this
excited state (within the equilibrium approximation). Although

Figure 1. CI and STC points location scheme.

(EK - EL) ) 〈ΨK|ĤQM + ĤQM/MM|ΨK〉 -
〈ΨL|ĤQM + ĤQM/MM|ΨL〉 (7)

(EK - EL) ) 〈ΨK|ĤQM|ΨK〉 - 〈ΨL|ĤQM|ΨL〉 +

〈ΨK|ĤQM/MM
elect,n |ΨK〉 - 〈ΨL|ĤQM/MM

elect,n |ΨL〉 +

〈ΨK|ĤQM/MM
elect,e |ΨK〉 - 〈ΨL|ĤQM/MM

elect,e |ΨL〉 +

〈ΨK|ĤQM/MM
vdw |ΨK〉 - 〈ΨL|ĤQM/MM

vdw |ΨL〉 (8)

(EK - EL) ) 〈ΨK|ĤQM|ΨK〉 - 〈ΨL|ĤQM|ΨL〉 +

〈ΨK|ĤQM/MM
elect,e |ΨK〉 - 〈ΨL|ĤQM/MM

elect,e |ΨL〉 (9)

∇EK(r) )
∂GK(r)

∂r
) 〈∂HK(r, X)

∂r 〉 ≈ ∂〈HQM(r, X)〉
∂r

+

∂〈HQM/MM
elect (r, X)〉

∂r
+ 〈∂HQM/MM

vdw (r, X)

∂r 〉 (10)

gbKL ) ∇(EK - EL) ) ∇EK - ∇EL ) ∇[〈ΨK|ĤQM|ΨK〉 -

〈ΨL|ĤQM|ΨL〉] + ∇[〈ΨK|ĤQM/MM
elect,e |ΨK〉 - 〈ΨL|ĤQM/MM

elect,e |ΨL〉]
(11)
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strictly speaking, it would be necessary to perform an MD
simulation for each new solute geometry; this is a very
inefficient procedure. It has been verified that it is computa-
tionally more efficient to perform several steps of the CI or
STC search procedure before equilibrating again the solvent.
We update the solvent structure only after 10-20 iterations of
the crossing point search procedure.

In the case of frozen conditions, the CI or STC points are
located for a fixed solvent structure. During an electron
transition, the Franck-Condon principle is applicable, and the
solvent nuclei remain fixed. Consequently, the solvent structure
is in equilibrium with the charge distribution of the solute ground
state. The crossing point search procedure is performed in the
presence of this solvent structure.

Once the different CI and STC have been located, it is
necessary to determine their relative stabilities. For in-solution
systems, the relevant quantity is the free energy difference. The
standard free-energy difference between the initial and the final
state in solution, a CI and a minimum or FC point, for instance,
can be written as the sum of two terms:17

where

is the ab initio energy difference between the two quantum
mechanics, QM, states calculated using the in vacuo solute
molecular Hamiltonian,ĤQM, and the in-solution wavefunctions,
and∆Gint is the difference in the solute-solvent interaction free
energy between the two QM states. The free-energy perturbation
method18 was used to determine this energy. The solute
geometry was assumed to be rigid and a function of the
perturbation parameter (λ) while the solvent was allowed to
move freely. Whenλ ) 0, the solute geometry and charges
correspond to the initial state. Whenλ ) 1, the charges and
geometry are those of the final state. For intermediate values,
a linear interpolation is applied. A value of∆λ ) 0.05 was
used. That means that a total of 21 separate molecular dynamics
simulations were carried out to determine the free energy
difference. To test the convergence of the calculation, the
difference in interaction free energies calculated forward and
backward was compared. In order to clarify the role played by
the solvent in the stabilization of the different structures, it is
useful to split the∆Gint term into two components,∆Gint )
∆Eint + ∆Gsolv. The last term,∆Gsolv, provides the solvent
distortion energy, that is, the energy spent in changing the
solvent structure from an initial to a final state. The term∆Eint,
accounts for the difference in the solute-solvent interaction
energy between the final and the initial state.

III. Computational Details

We have studied the CI and STC points involved in the
radiationless de-excitation of s-trans-acrolein in aqueous solution
considering equilibrium and nonequilibrium conditions for the
solvent. The states were described using the CASSCF level of
theory. The active space was spanned by all of the configurations
arising from six valence electrons in five orbitals (6e/5o). All
the calculations were performed with the ASEP/MD program13a

using the data provided by Gaussian 9819 and Moldy20 and the
6-31G* basis set. The initial geometry for acrolein was obtained
by CASSCF optimization both in vacuum and in solution with
the aforementioned basis set. In all cases, we take as initial point

of the CI search procedure the geometry of the Franck-Condon
(FC) excitation, that is, the geometry of the ground state
minimum.

To locate the CI or STC point, we used a quasi-Newton
method where the increment of geometryh is defined by

Here, Vbi and bi are the eigenvectors and the eigenvalues,
respectively, of the Hessian matrix andfKL the gradient described
previously. To update the approximate Hessian, we employed
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm.
We consider that the CI or STC point has been reached when
the energy difference between the two states is lower than
0.002 au (∼1.3 kcal/mol) and the energy and geometry are
stabilized. The minimal energy CI (MECI) or STC (MESTC)
is the lowest energy point that fulfills these conditions. In
solution, the results are affected by statistical uncertainty, and
we take average values of the last 5 ASEP/MD cycles.

A total of 251 molecules were simulated with fixed intramo-
lecular geometry by combining LJ interatomic interactions with
electrostatic interactions. The solvent was represented by 250
TIP3P21,22 molecules in a cubic box of 18.7 Å side. Periodic
boundary conditions were applied, and spherical cutoffs were
used to truncate the molecular interactions at 9.0 Å. A time
step of 0.5 fs was used. The electrostatic interaction was
calculated with the Ewald method. The temperature was fixed
at 298 K by using a Nose´-Hoover thermostat. Each MD
calculation simulation was run for 75 ps (25 ps equilibration,
50 ps production).

IV. Results

In the radiationless relaxation of acrolein, there are at least
four states involved: the ground state, S0, the first singlet excited
state, S1(n f π*), and two triplet states, T(π f π*) and T(n f
π*). Given that there are several surface crossings, the relative
order of the states depends on the geometry of the molecule.
For a given multiplicity, we classify the states T1, T2, and so
forth, according to the order of stability of their absolute minima;
see Table 1. So, we denote as T1 the T(π f π*) state and as T2
the T(n f π*) state.

Two paths have been proposed in order to explain the
radiationless de-excitation of acrolein in gas phase: (1) a direct
de-excitation through a S1/S0 IC and (2) an indirect path that
starts with a S1/T1 ISC. From here, we have several possibili-
ties: (a) the system can return to the ground state through a
T1/S0 ISC or (b) the system can pass to T2 through a T1/T2 IC.
From T2, acrolein can relax radiatively (giving rise to a very
weak band in the phosphorescence spectrum), or it can return
to T1 and from here to S0 through an ISC, as in possibility (a).

∆Gdiff )∆Esolute+ ∆Gint (12)

∆Esolute) Ef - Ei ) [〈Ψf|ĤQM|Ψf〉 - 〈Ψi|ĤQM|Ψi〉] (13)

TABLE 1: Energy Results in au, ∆E and ∆G in kcal/mol

vacuum solution

E ∆E ∆G eq. ∆E non-eq. geometry

S1 FC -190.6788 0.0 0.0 0.0
S0 min -190.8235 -90.8 -95.8 planar
S1 min -190.7081 -18.4 -20.7 planar
T2 min -190.7131 -21.5 -22.3 planar
T1 min -190.7278 -35.7 -36.4 twisted
S1/T1 STC -190.7044 -16.1 -19.2 -17.7 planar
T2/T1 CI -190.7055 -16.7 -19.1 -18.4 planar
T1/S0 STC -190.7275 -30.5 -33.7 -34.2 twisted
S1/S0 CI -190.6762 +1.6 -1.4 +6.4 twisted

h ) - ∑
i)1

n Vbi
t fBKLVbi

bi

(14)
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The main objective of this paper is to determine if this scheme
is also valid when the system is in aqueous solution. Further-
more, we will try to clarify the solvent’s influence on the
geometry and relative stability of the different crossing points
and states involved and the role of the solvent dynamics
(equilibrium solvation or frozen solvent) in the acrolein
relaxation.

Figures 2 and 3, display the evolution of the total energy in
vacuo and in solution as a function of the number of cycles of
the search procedure. Figure 2 represents the search of the S1/
S0 CI point, and Figure 3 represents the corresponding to the
T1/S0 STC. In the first steps, the energy difference between the
two crossing states decreases until the system is close to the CI
or STC seam. Then the energy decreases until the MECI or
MESTC is reached. Each time a new MD is performed, the
solvent structure is recalculated. If the structure change is
important, the position of the crossing seam changes, and the
energies begin to fluctuate until they are again stabilized in a
new plateau. The in-solution values (energies, geometries,
dipoles, etc.) are calculated by averaging over the results
obtained with the last 5 cycles of the ASEP/MD process.

The main results obtained in this paper are displayed in Table
1 and Figure 4. Table 1 provides the relative stability of the
different minima, CI and STC points, calculated in vacuo and
in solution, and in this latter case, in equilibrium and frozen
solvent conditions. Figure 4 displays the geometries of the
minima and minimal energy CI and STC.

We begin by analyzing the influence of the solvent on the
different geometries supposing solvent equilibrium conditions.
In all the cases analyzed, minima, MECI and MESTC, the
solvent increases the CO distance and decreases the two CC

distances with respect to the in vacuo values. This behavior
can be explained by the formation of hydrogen bonds between
the carbonyl oxygen and the hydrogen of the water molecules.
The largest distance variations appear in the T1/S0 STC and
T1/T2 CI. The variation of the geometrical parameters does not
correlate with the induced dipole moment (see Table 2). In fact,
the largest values of the induced dipole moments are obtained
for the S1/S0 CI and T1 minimum. In order to explain the
variation of the geometrical and electric properties, it is
necessary to consider two variables: the bond order of the
carbonyl group and the in vacuo dipole moment value. The
largest variations of the dipole moment appear in those structures
where the CO bond retains its double bond character. The
solvent stabilizes the zwitterionic form of the double bond
through the formation of hydrogen bonds and hence increases
the dipole moment. On the contrary, the largest variations of
distances appear in those structures where the CO bond has a
single bond character and the dipole moment is high. In these
conditions, the bond is more labile and hence easier to elongate.
In twisted structures, the solvent affects slightly the C1C2C3H3

torsion angle value, which, in the S1/S0 CI structure, for instance,
increases from 100° to 103°.

The solvent has also effects on the relative energies of the
minima and crossing points, Table 1. All data have been referred
to the FC points (in vacuo and in solution) which are the points
where the de-excitation process initiates. We analyze first the
solvent in equilibrium situation. Since the energies are referred
to the FC point, the difference between the ground state energy
in vacuo and that in solution provides the solvent shift of the
1(n fπ*) absorption band. The calculated solvent shift is 5.0
kcal/mol, very close to the experiment23 (4.5 kcal/mol). As a
general rule and when compared with the in vacuo values, the
solvent stabilizes all of the minima and crossing points of
acrolein. Within our approximation, in the FC point, the solvent
is frozen, however in the rest of the points, minima, CI and
STC, the solvent is in equilibrium with the corresponding solute
charge distribution. The relaxation of the solvent from a
nonequilibrium situation to an equilibrium situation explains
the additional stabilization obtained in solution with respect to
the in vacuo values. This is corroborated by the fact that all
∆Gsolv values in Table 3 are negative. This table displays the
values of the different contributions to∆G. The solute-solvent
interaction energy can sometimes take positive values; however,
even in these cases, this energy is compensated by the energy
gained during the relaxation of the solvent, given by∆Gsolv. A
point to emphasize is that, except in the S1/S0 CI, in the rest of
cases, the main contribution to∆Gdiff comes from∆Esolute, that
is, the relaxation of the solute geometry. It is this component
which determines the relative stability order of the different
excited states.

The main conclusion that one can obtain from Table 1 is
that, in solution, the radiationless relaxation can follow the same
path as in vacuo. The direct de-excitation, path 1 (see above),
through the S1/S0 CI is unlikely but possible; it is 1.6 kcal/mol
above the gas-phase FC point but 1.3 kcal/mol below the FC
point in solution. However, this path involves an appreciable
reorganization of the solvent structure, as is evidenced by the
comparison between the OO and the OH radial distribution
functions for the S1/S0 CI (dotted line in Figures 5 and 6) and
FC point. Like for the gas-phase process, the most probable
de-excitation path passes through the S1/T1 STC. This path
implies also a large reorganization of the solvent structure
around acrolein, and hence, given the larger times of relaxation

Figure 2. Evolution during the search procedure of the S0 and S1

energies (in hartree) in vacuum (thin lines, continuous and dotted,
respectively) and in solution (thick lines, continuous and dotted,
respectively).

Figure 3. Evolution during the search procedure of the S0 and T1

energies (in hartree) in vacuum (thin lines, continuous and dotted,
respectively) and in solution (thick lines, continuous and dotted,
respectively).
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of the solvent with respect to the relaxation times of the solute,
one can expect equilibrium paths to be slower in solution than
in vacuo.

The change of solvent structure around the solute depends
on the nature of the excited-state considered; see Figures 5-7.
The initial structure corresponds to the FC point, that is, to a
solvent in equilibrium with the charge distribution of S0 state.
In this state, there is a strong interaction between the carbonyl

group and the water molecules; the coordination number is close
to 2. Regarding the solvent structure around the solute when
this is in its singlet and triplet excited states, it depends on the
type of transition involved. Inn f π* transitions, an electron
is transferred from the oxygen lone pair to the carbon skeleton.
As a consequence, the water-acrolein hydrogen bond weakens,
and the first peak of both OO and OH radial distribution function
(rdf) is shifted outward at the same time as its height decreases.
The passing from the FC point to the final S1/S0 CI implies a
partial desolvation of the carbonyl group, in fact, the coordina-
tion number decreases to 0.65. On the contrary, aπ f π*
transition does not affect the strength of the hydrogen bond,
and its effect on the solvent structure is smaller.

Another point to emphasize is that the T1/S0 STC is very
close in energy and geometry to the minimum of the T1 state,
consequently, the emission probability from this state must be
very low. The weak phosphorescence band must be hence
associated to the de-excitation from the T2 state. In vacuo, the

Figure 4. (a) S1/S0 CI geometry in vacuo and in solution (in parentheses). (b) T1/S0 STC geometry in vacuo and in solution (in parentheses). (c)
S1/T1 STC geometry in vacuo and in solution (in parentheses). (d) T1/T2 CI geometry in vacuo and in solution (in parentheses). (e) FC geometry
in vacuo and in solution (in parentheses). (f) T1 minimum geometry in vacuo and in solution (in parentheses). Distances in Å.

TABLE 2: Dipole Moment Values in Debyes

vacuum solution

eq. non-eq.

S0 min 2.88 3.94( 0.04
S1 min 1.55 1.84( 0.08
S1 FC 1.05 1.87
T2

3(nfπ*) min 1.40 1.69( 0.03
T1

3(πfπ*) min 2.88 3.90( 0.11
S1/T1

S1 1.41 1.70( 0.01 2.47
T1 2.45 2.93( 0.13 3.36

T2/T1

T2 1.34 1.75( 0.13 1.34
T1 2.52 2.83( 0.09 2.52

T1/S0

T1 2.90 3.91( 0.09 2.90
S0 2.87 3.85( 0.03 2.87

S1/S0

S1 2.59 3.06( 0.05 2.78
S0 1.78 2.13( 0.08 3.60

TABLE 3: Relative Free Energy (in kcal/mol) and Its
Components in Different Points in Solution in Equilibrium
Conditions

∆Esolute ∆Gsolv ∆Eint ∆Gdiff

S1 FC 0.0 0.0 0.0 0.0
S1/T1 STC -16.5 -5.0 +2.3 -19.2
T2/T1 CI -16.2 -4.5 +1.6 -19.1
T1/S0 STC -28.0 -0.4 -5.3 -33.7
S1/S0 CI +1.6 -7.0 +4.0 -1.4
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calculated emission energy for this band is 2.24 eV, the
experimental value is 2.46 eV. The solvent shift is
0.73 kcal/mol, similar to that found in the fluorescence
spectrum.24

The different crossing points have also been located for a
frozen solvent situation. Depending on the case, the search
procedure can be more complicated than in the equilibrium
solvation situation; see Figure 8. In frozen solvent conditions
all of the crossing points are less stable than the corresponding
equilibrium points. So, for instance, the S1/S0 CI is 6.3 kcal/
mol above the FC point. However, the path that involves the
S1/T1 and T1/S0 STC is still energetically possible. This path
does not imply solvent reorganization, only solute movements,
and hence can take place, in principle, at practically the same
speed as in vacuo and must be faster than the corresponding
equilibrium path. In conclusion, the radiationless relaxation of

acrolein in aqueous solution could follow the same path as that
of the in vacuo system and proceed with a similar speed.

V. Conclusions

A new method to locate minimum energy points of CI and
STC in solution has been presented. The method permits us to
combine high level quantum calculations in the solute descrip-
tion with a detailed description of the solvent structure obtained
from molecular dynamics simulations. Furthermore, the method
can be used with the solvent in equilibrium and nonequilibrium
conditions. As an example of application, we have studied the
radiationless de-excitation of s-trans-acrolein which involves
several IC and ISC processes.

In acrolein, the solvent does not introduce drastic changes in
the geometries of CI and STC points. Furthermore, the small
changes found are completely similar to those found for minima.
The solvent modifies the relative stability of the different CI
and STC but not enough as to alter the order of stability.
Consequently, the radiationless relaxation of acrolein in aqueous
solution can follow the same path as in vacuo. This is valid
both for equilibrium and for nonequilibrium solvent conditions.
However, the relaxation through an equilibrium path involves
a strong solvent reorganization; hence, this path will be slower
than the in vacuo path. On the contrary, the nonequilibrium path
does not involve solvent motion, and the de-excitation can
proceed with the same speed as in vacuo.
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