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Solvent Effects on Internal Conversions and Intersystem Crossings: The Radiationless
De-Excitation of Acrolein in Water
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An extended version of the averaged solvent electrostatic potential from molecular dynamics data (ASEP/
MD) method oriented to the study of the solvent effects on internal conversion and intersystem crossing
processes is presented. The method allows for the location of crossing points between free energy surfaces
both in equilibrium and in frozen solvent conditions. The ground and excited states of the solute molecule
are described at the complete active space self-consistent field (CASSCF) level while the solvent structure is
obtained from molecular dynamics simulations. As an application, we studied the nonradiative de-excitation
of strans-acrolein}(n — z*) in aqueous solution. We found that the solvent modifies the relative stability

of the different crossing points but not enough as to alter the relative order of stability with respect to the in
vacuo situation. The relaxation through an equilibrium path involves a strong solvent reorganization. On the
contrary, the nonequilibrium path does not involve solvent motion and the de-excitation could proceed with

the same speed as in vacuo.

I. Introduction wave functions, and gradients (ground and excited states,
derivative coupling) of the solute used by the Cl and STC

It is well-known that solvent effects play a fundamental role . . . . -
ved searching algorithms in solution and (b) the calculation of the

in chemistry. The solvent affects the kinetics and thermodynam- X .
ics of chemical reactions, modifying the nature and ratio of the free energy differences between the q#fere_nt structures (Cl,
products, it also modifies the appearance of spectra, shifting STC, minima, FranckCondon (FC) points) involved in the
the position of bands or modifying their intensities. In the past photochemical process.

decades, much effort has been dedicated to the development of Furthermore, in solution, there exists a subtle interplay
models allowing the study of solvent effects on chemical between the dynamics of the solvent and the time evolution of

equilibrium and reactions and molecular spectra. Comparatively, (€ excited state. A photochemical process begins usually with

less attention has been paid, however, to the study of solventtN€ €xcitation from the minimum energy configuration of the
effects on the evolution and reactivity of molecules in excited 9round state to the FraneiCondon point on the excited-state
states, that is, photophysical and photochemical processes. Th&f€€ energy surface. In solution, in the FC point, the solvent is
reasons are obvious, to the difficulties inherent to the study of N & nonequilibrium situation, that is, the solvent structure
nonadiabatic processes(processes that imply more than one corregponds to the equilibrium Wlt.h the s.olut.e ground.state and
potential energy surface) in vacuo, one must add the complica—”Ot Wlth the actual solute charge d|§Frlbgtlon in the excited state.
tions associated to the presence of a solvent, that is, the existenc&S time goes on, the solvent modifies its structure, and after a
of a manifold of configurations thermally accessible that must '0N9g_enough time, it becomes equilibrated with the charge
be included to obtain statistically significant results and the great diStribution of the solute excited state. In the photochemistry

number of solvent molecules that interact with the solute ©f in-solution systems, we can hence define two limiting
molecule. situations depending on whether the solvent is in an equilibrium

One can distinguish two basic types of crossing points ©F nonequilibrium situation. Most theoretical models proposed

between potential energy surfaces: conical intersection (Cl) if {0 date have considered nonequilibrium solvation. The consid-
the crossing is between states with the same spin symmetry eration of nonequilibrium solvation is motivated by the fact that
giving rise to internal conversion (IC) processes, or singlet ‘most radiationless relaxations take place on the femtosecond

triplet crossing (STC), for instance, if the states have different {ime scale, a scale in which, probably, the solvent equilibration
spin symmetry, and this leads to intersystem crossing (ISC). IS not complete. However, in systems where the geometry of

The work developed by the groups of YarkohRuedenberg the Cl or STC points involved in the photochemical process
et al. and Robb et al.has shown that Cl and STC are a very aré Very different from the FC point, the reaction will take place

common feature of potential energy surfaces. As a result of that, Nl after a great part of the solvent reorganization has occurred.
presently, one can use techniques and algorithms that permit A few recent studies have proposed methods to |n7clude
the determination of those geometries for which CI and STC Solvent effects in the study of IC processes. Burghardt ét’al.,

appear for in vacuo systems. The extension of these techniquedOr instance, use continuum methods to study IC in solution;
to in-solution systems is not easy because the methods musthese authors introduce an explicit coordinate for the solvent,

permit (a) the inclusion of the solvent effects on the energy, which permits them to study the solvation dynamics during the
internal conversion process. Methods that permit a more detailed

* Corresponding author. E-mail: maguilar@unex.es. description of the solvent have also been proposed; therefore,
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in a recent paper, Yamazaki and Katase the RISM-SCF generated by the solvent are obtained by solving an effective
method for describing the solvent dynamics during energy Schralinger equation
surface crossing in ethylene and @HH," in polar solvents. R R
Finally, several grougs!! have used quantum mechanics/ (Hom + Hommm) 1Y 0= E|WD )
molecular mechanics (QM/MM) methods to locate ClI generally
in nonequilibrium conditions, that is, for a frozen solvent whereHqu is the “in vacuo” solute molecular Hamiltonian and
structure. where the solutesolvent interaction term,:IQM/MM takes the

In this paper, we present an extension of a sequential QM/ following form:
MM method that permits us to locate and describe the energetic

and geometrical properties of unavoided crossings of potential HQM,MM = Hgf,f,‘MM + I:|"Qd,\‘j1",,\,,M )
energy surfaces in solution both in equilibrium and in nonequi-

ibri itions. The proposed method is an extension to the el _ A .

librium conditions. The prop Hg&c/tMM _ f dr-p-IVg(r;p) 00 3)

case of solvated molecules of an algorithm due to Bearpark et

12 i i i i . .
al.” The method is valid for all types of crossings and combines \pere5 s the solute charge density operator and the brackets
a high level ab initio quantum-mechanical description of the yenqte 4 statistical average. The tel(r;p)Cis the averaged
solute with a detailed description of the solvent obtained through 4|actrostatic potential generated by the solvent at the position

molecular dynamics (MD) simulations. _ and is obtained from MD calculations where the solute molecule
We apply the proposed method to the study of the different ig represented by the charge distributipand a geometry fixed
ICs and ISCs involved in the radiationless relaxation obss during the simulation. For details about the calculation of

acrolein. Acrolein or propenal is the smallesp-unsaturated Vs(r:p)[] see ref 14. Th&\éd

X . v term is the Halmiltonian for
carbonyl compound. The interaction between the carbonyl group e van der Waals interaction, in general, represented by a

gnd the G=C double bond .makes it a comppund qf marked Lennard-Jones potential. This term is calculated by averaging
interest from a spectroscopic and photochemical point of View. i< \a1ye over all solvent configurations selected during the MD

Furthermore, it has been shown that it can form several hydrogeng;mjation. It depends only on the nuclear coordinates and hence
bonds with the water molecules, a situation where the employ- o5 g effect on the solute wave function, but it contributes to
ment of simplified solvent models, such as dielectric continuum o final value of the energy, gradient, and Hessian.

models, is not adequate. The photochemistry of this compound ' 14 |ocate a minimum ehergy cro,ssing point, we have
has already been StUd.'ed in gas-phase condlﬁ@ﬁnweyer, combined the ASEP/MD method with an algorithm due to
to our knowledge, no intent has been done for including the Bearpark et a2 which permits to locate the minimum energy

solvent effects. . . , point of the CI (MECI) or STC (MESTC) seam without
The rest of the paper is organized as follows: section Il empjoying Lagrange multipliers. This algorithm simultaneously

explains the algorithms to locate and characterize the Cl and yinimizes the energy difference between the two intersecting

STC points in solution. Section Il describes the computational gates and the energy of the crossing seam between the two

details of the study. Section IV discusses the influence of the stential energy surfacééThe final form taken by the gradient
solvent on the position and features of the different Cls and jg.

STCs in stransacrolein. Finally, section V states the main
conclusions of the study. fr. = 2(Ex — EDO + [VEx — (VE 8 )0 —

Il. Method (VEK'F‘KL) F‘KL] (4)

In the description of the solvent effects, we used the averagedhere,Ex and E_ are the energies of the intersecting surfaces,
solvent electrostatic potential from molecular dynamics data VE is the gradient of the upper state afil andhg are the
(ASEP/MD) metho#~1* developed in our laboratory. ASEP/  two versors that define the branching spacg-eh plane! that
MD is a QM/MM effective Hamiltonian method that makes is, the subspace of nuclear coordinates in which the degeneracy
use of the mean field approximatié#f In this approximation, between the two intersecting surfaces is lifted linearly in
the average value of any solute property is replaced by the valuedisplacements from the intersection. When the two intersecting
calculated in the presence of an average perturbation orstates have different spin symmetry as in the case of STC, the
configuration. The method combines quantum mechanics (QM) hy, term vanishes, and only one coordinate defines the branching
and molecular dynamics (MD) techniques, with the particularity space. The expression taken by the gradient difference vector
that full QM and MD calculations are alternated and not (gk,) is:
simultaneous. During the MD simulations, the intramolecular
geometries and charge distributions of all molecules are Ok, = V(Ex — E) (5)
considered as fixed. From the resulting data, the average ﬁ
electrostatic potential generated by the solvent on the solute isand the derivative coupling vectong):
obtained. This potential is introduced as a perturbation into the _
solute’s quantum mechanical Hamiltonian, and by solving the hy = W VIVY O (6)
associated Schdinger equation, one gets a new charge
distribution for the solute, which is used in the next MD where the gradienY is a vector in the nuclear space a¥f
simulation. The iterative process is repeated until the electron are the adiabatic electronic wave functions, eigenfunctions of
charge distribution of the solute and the solvent structure aroundthe electronic HamiltonianH, with energiesE;. The corre-
it are mutually equilibrated. The main characteristics of the sponding versors are defined@s = G./| OkL| andhy, ZF]KL/
method have been described elsewhéré&t Here, we shall [ — [(he/| P ) Okl Ok N
detail only some points pertinent to the current study. In the definition of the gradienfx., eq 4, the solvent can

In ASEP/MD the energieg, and electronic wave functions,  affect (1) the energy difference between the two st&eand
W, of the solute molecule in presence of the average perturbationE,, (2) the gradient of the upper excited stateFyx, and (3)
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the two vectors that define the branching spae,and hy..
Next, we analyze in detail the solvent influence on each one of
these terms.

(1) Energy Difference, Ex — EL).

(E«—ED= BIJ|<||:|QM + HQM/MM |IPAKD_ .
(W, [Hom t Hommm P LU (7)

E andW are obtained by solving eqs-B. The interaction term

is the sum of the electrostatic and van der Waals contributions.
In turn, the electrostatic contribution can be split into two
components: the interaction between solute nuclei and solvent
charges, Iiig'ﬁ,f,‘M”M, and the interaction between the solute
electronic charge distribution and the solvent chatgggs,,

(Ex — E) = [Wy|Homl WO [V [Hy W, O+
W | HGmnan [P O T [H R | W, O
W, |H W, [+ W, |H W, H

electe

QM/MM
vdw vdw
QM/MM QM/MM

electn
QM/MM

electe
QM/MM

(W I Figminam Wk O T Hguinam (% 0 8)

In this point, we introduce the following approximation: we
suppose that the Lennard-Jones coefficients are the same fo
all of the electronic states of a molecule. Furthermore, taking
into account the fact that the two stateandL are calculated
at the same geometry, one can simplify eq 8 and obtain the

final expression for the energy difference:

(Ex — E) = Wy |How Wy O [ |Hoy W O+

W | A pam W O (WA

electe

ommm L0 9)

The energy difference depends implicitly on the solvent through
the in-solution wavefunction®x andW,_ and explicitly through
the Hgpiay terms.

(2) Upper State Gradient, VEk. In the calculation of this
gradient, we use a variant of the free energy gradient méthod
described in a previous paper. The gradients at the poirfit

the free energy surfadé¢ are calculated a4

IGK(r) | aH(r, X)| | 9Hqu(r, X)O
or _B ar & ar +

elect
X ] 10y

VE((r) =

vdw
QM/MM

or

I (r, X)D+ BH

QM/MM
or
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Figure 1. Cl and STC points location scheme.
ﬂgm‘j_,w operator does not depend explicitly on the nuclear
coordinates of the solute.)

In the calculation of the derivative coupling, eq 6 is used
with the solute wave function perturbed by the solvent.

The complete scheme of the process followed to locate ClI
or STC points of molecules in solution using ASEP/MD is
shown in Figure 1. We begin by equilibrating the solvent and
the solute charge distribution at the ground state and getting a
set of point charges that represent the in-solution charge
distribution of the solute molecule in the ground state. In our
case, these charges are usually obtained using the CHELPG
method!® These charges are then used as input for an MD
simulation of the solute and solvent molecules, the remaining
solute (LJ coefficients) and solvent (charges and LJ coefficients)
parameters are obtained from the literatukerepresentative
solvent configurations usually taken between 500 and 1000)
are selected from the MD simulation. From these configurations,

where the brackets denote a statistical average over the solvengq averaged solvent potential, eq 3, generated by the solvent

configurationsX. As we can see, electrostatic and van der Waals

in the volume occupied by the solute is calculated. Next, the

contribution are calculated in a different way. In the case of gjectronic Schirdinger equation, eq 1, for the solute molecule
the electrostatic term, the gradient is calculated as the gradientg ¢oved in the presence of the averaged perturbation generated

of an averaged solvent configuration; however, the van der
Waals contribution is calculated as the averaged value of the
gradients of all solvent configurations selected.

_(3) Gradient Difference @«.) and Derivative Coupling
(hkL) Vectors. By differentiating eq 9, one obtains:

Gk = V(E¢x — E)) = VE — VE_ = V[[W, |Hoy ¥ O~

mjl—mQMllqu] + V[WKMSWSWWKD— B[pL“:' M|lqu]
(11)

electe
QM/M

by the solvent. The energies and wave functions of the crossing
states together with the rest of terms appearing in eg$l4

are calculated, and the gradidpt is obtained. A new solute
geometry is estimated by using a quasi-Newton method. In this
point, we have two possibilities depending on whether the
solvent is in an equilibrium or frozen solvent situation. In the
former case, the solvent must be equilibrated with the solute
charge distribution of the upper state and hence a new MD must
be performed; the procedure is continued until the solvent
distribution and the charge distribution of the upper state are

where the van der Waals and nuclear terms vanish because theynutually equilibrated. The choice of the upper state is justified
depend only on nuclear coordinates and hence take the samdy the physical process of de-excitation, where the system

values for all the electronic states. (Note that in those cases
where the HellmannFeynman theorem is applicable the last

evolves in the excited-state surface and the involved crossing
points are those where the solvent is in equilibrium with this

term of the right hand side (rhs) of eq 11 vanishes because theexcited state (within the equilibrium approximation). Although
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strictly speaking, it would be necessary to perform an MD TABLE 1: Energy Results in au, AE and AG in kcal/mol
simulation for each new solute geometry; this is a very vacuum solution
inefficient procedure. It has been verified that it is computa-

tionally more efficient to perform several steps of the Cl or E AE AGeq. AEnon-eq. geometry
STC search procedure before equilibrating again the solvent. St r';?n —igg-gggg gooéo 950é0 0.0 anar
We updat_e the '_s,olvent structure only after-1D iterations of s min  —190.7081 —18.4 —20.7 Blanar
the crossing point search prchdure. . T, min -190.7131 —215 —22.3 planar

In the case of frozen conditions, the Cl or STC points are T, min —190.7278 —35.7 —36.4 twisted
located for a fixed solvent structure. During an electron SJ/T; STC -190.7044 —16.1 -19.2 -17.7 planar
transition, the FranckCondon principle is applicable, and the  T/T: CI ~ —190.7055 —-16.7 —19.1  —184  planar
solvent nuclei remain fixed. Consequently, the solvent structure Tl;SO CS:-I'-C :igg'é%g __Ei)'g _—3347, _32'421 ttW.'Stteg
is in equilibrium with the charge distribution of the solute ground SIS : : : : wiste

state. The crossing point search procedure is performed in the
presence of this solvent structure.

Once the different Cl and STC have been located, it is
necessary to determine their relative stabilities. For in-solution
systems, the relevant quantity is the free energy difference. The
standard free-energy difference between the initial and the final
state in solution, a Cl and a minimum or FC point, for instance,
can be written as the sum of two terffs:

of the Cl search procedure the geometry of the Frai@@indon
(FC) excitation, that is, the geometry of the ground state
minimum.

To locate the Cl or STC point, we used a quasi-Newton
method where the increment of geomelrys defined by

he n 3it_ﬂ(LT/i (14)
= b;

AGy =AEgg et AGy (12)

Here, 7; and b; are the eigenvectors and the eigenvalues,
respectively, of the Hessian matrix afad the gradient described
; i . ‘ [~ i previously. To update the approximate Hessian, we employed
AEgue=E — E = [[W]Hqy/W'- W HouW (13) the Broyden-FletcherGoldfarb-Shanno (BFGS) algorithm.
We consider that the Cl or STC point has been reached when
is the ab initio energy difference between the two quantum the energy difference between the two states is lower than
mechanics, QM, states calculated using the in vacuo solute0.002 au ¢1.3 kcal/mol) and the energy and geometry are
molecular Hamiltoniantowm, and the in-solution wavefunctions,  stabilized. The minimal energy Cl (MECI) or STC (MESTC)
andAGyy is the difference in the solutesolvent interaction free  is the lowest energy point that fulfills these conditions. In
energy between the two QM states. The free-energy perturbationsolution, the results are affected by statistical uncertainty, and
method® was used to determine this energy. The solute we take average values of the last 5 ASEP/MD cycles.
geometry was assumed to be rigid and a function of the A total of 251 molecules were simulated with fixed intramo-
perturbation parameteil) while the solvent was allowed to  lecular geometry by combining LJ interatomic interactions with
move freely. Wheml = 0, the solute geometry and charges electrostatic interactions. The solvent was represented by 250
correspond to the initial state. Whén= 1, the charges and  TIP3F2122molecules in a cubic box of 18.7 A side. Periodic
geometry are those of the final state. For intermediate values,boundary conditions were applied, and spherical cutoffs were
a linear interpolation is applied. A value &1 = 0.05 was used to truncate the molecular interactions at 9.0 A. A time
used. That means that a total of 21 separate molecular dynamicstep of 0.5 fs was used. The electrostatic interaction was
simulations were carried out to determine the free energy calculated with the Ewald method. The temperature was fixed
difference. To test the convergence of the calculation, the at 298 K by using a Ndskloover thermostat. Each MD
difference in interaction free energies calculated forward and calculation simulation was run for 75 ps (25 ps equilibration,
backward was compared. In order to clarify the role played by 50 ps production).
the solvent in the stabilization of the different structures, it is
useful to split theAGiy; term into two componentsAGin; = IV. Results

AEint + AGson The last term,AGsoy, provides the solvent In the radiationless relaxation of acrolein, there are at least
distortion energy, that is, the energy spent in changing the ¢, states involved: the ground state, e first singlet excited
solvent structure frqm an |n|t|§l to a final state. Tr_le tmm, state, $(n — %), and two triplet states, T(— 7*) and T(h —
accounts for the difference in the solutgolvent interaction  .+) Gijyen that there are several surface crossings, the relative
energy between the final and the initial state. order of the states depends on the geometry of the molecule.
For a given multiplicity, we classify the stateg, T, and so
forth, according to the order of stability of their absolute minima;
We have studied the Cl and STC points involved in the see Table 1. So, we denote astiie T(t — 7*) state and as I
radiationless de-excitation ofteans-acrolein in aqueous solution  the T( — 7*) state.
considering equilibrium and nonequilibrium conditions for the Two paths have been proposed in order to explain the
solvent. The states were described using the CASSCF level ofradiationless de-excitation of acrolein in gas phase: (1) a direct
theory. The active space was spanned by all of the configurationsde-excitation through a5 IC and (2) an indirect path that
arising from six valence electrons in five orbitals (6e/50). All starts with a §T1 ISC. From here, we have several possibili-
the calculations were performed with the ASEP/MD progi&m  ties: (a) the system can return to the ground state through a
using the data provided by Gaussiart®%énd Moldy?® and the T1/Sy ISC or (b) the system can pass tptfirough a T/T» IC.
6-31G* basis set. The initial geometry for acrolein was obtained From T, acrolein can relax radiatively (giving rise to a very
by CASSCF optimization both in vacuum and in solution with weak band in the phosphorescence spectrum), or it can return
the aforementioned basis set. In all cases, we take as initial pointto T; and from here to Sthrough an ISC, as in possibility (a).

where

[ll. Computational Details
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—04 distances with respect to the in vacuo values. This behavior
can be explained by the formation of hydrogen bonds between
the carbonyl oxygen and the hydrogen of the water molecules.
The largest distance variations appear in théSgf STC and
T4/T, CI. The variation of the geometrical parameters does not
correlate with the induced dipole moment (see Table 2). In fact,
the largest values of the induced dipole moments are obtained
for the S/Sy Cl and Ty minimum. In order to explain the
variation of the geometrical and electric properties, it is
necessary to consider two variables: the bond order of the

—09 - ; - carbonyl group and the in vacuo dipole moment value. The

0 50 100 150 200 . . .
Iterations largest variations of the dipole moment appear in those structures

Figure 2. Evolution during the search procedure of thea®d S where the CO bond retallnsllts_double bond character. The
energies (in hartree) in vacuum (thin lines, continuous and dotted, Solvent stabilizes the zwitterionic form of the double bond
respectively) and in solution (thick lines, continuous and dotted, through the formation of hydrogen bonds and hence increases
respectively). the dipole moment. On the contrary, the largest variations of

o4 distances appear in those structures where the CO bond has a
single bond character and the dipole moment is high. In these
conditions, the bond is more labile and hence easier to elongate.
In twisted structures, the solvent affects slightly theC§CsH3
torsion angle value, which, in the/S; CI structure, for instance,
increases from 100to 103.

The solvent has also effects on the relative energies of the
minima and crossing points, Table 1. All data have been referred
to the FC points (in vacuo and in solution) which are the points
where the de-excitation process initiates. We analyze first the
: ‘ solvent in equilibrium situation. Since the energies are referred
0 50 100 150 to the FC point, the difference between the ground state energy

Iterations in vacuo and that in solution provides the solvent shift of the
Figure 3. Evolution during the search procedure of theeid T Y(n —x*) absorption band. The calculated solvent shift is 5.0
energies (in hartree) in vacuum (thin lines, continuous and dotted, | -o\/mq| very close to the experiméh(4.5 kcal/mol). As a
respectively) and in solution (thick lines, continuous and dotted, ’ . .
respectively). general rule 'a.nd when compare.d. with the in vacuo valges, the
solvent stabilizes all of the minima and crossing points of

The main objective of this paper is to determine if this scheme acrolein. Within our approximation, in the FC point, the solvent
is also valid when the system is in aqueous solution. Further- is frozen, however in the rest of the points, minima, Cl and
more, we will try to clarify the solvent's influence on the STC, the solvent is in equilibrium with the corresponding solute
geometry and relative stability of the different crossing points charge distribution. The relaxation of the solvent from a
and states involved and the role of the solvent dynamics ponequilibrium situation to an equilibrium situation explains
(equilibrium solvation or frozen solvent) in the acrolein the additional stabilization obtained in solution with respect to
rela?<at|on. . ) ~the in vacuo values. This is corroborated by the fact that all

Figures 2 and 3,. display the eyolunon of the total energy in AGsy values in Table 3 are negative. This table displays the
vacuo and in solution as a function of the number of cycles of | 5)es of the different contributions t6G. The solute-solvent
the search procedure. Figure 2 represents the search of/the Sinieraction energy can sometimes take positive values; however,

So ClI point, and Figure 3 represents the corresponding to the oo in these cases. this eneray i
; . , gy is compensated by the energy
T1/S STC. In the first steps, the energy difference between the Eai”ed during the relaxation of the solvent, givenAsow. A

twosgrrgssmg Stﬁﬁs d?ﬁreases untclil the system I?I(:tllssel\;(l)zglle c oint to emphasize is that, except in thgSg Cl, in the rest of
: P ’ is, the relaxation of the solute geometry. It is this component

_solvent structure s recalculated. !f the structure change is which determines the relative stability order of the different
important, the position of the crossing seam changes, and the

X i . ) - - excited states.
energies begin to fluctuate until they are again stabilized in a ) . . .
new plateau. The in-solution values (energies, geometries, The main conclusion that one can obtain from Table 1 is
dipoles, etc.) are calculated by averaging over the resultsthat,in spluhon,the radlgtlonless relgxa’qon can follow the same
obtained with the last 5 cycles of the ASEP/MD process. path as in vacuo. The direct de-excitation, path 1 (see above),
The main results obtained in this paper are displayed in Table through the §S Cl is unlikely but possible; it is 1.6 kcal/mol
1 and Figure 4. Table 1 provides the relative stability of the above the gas-phase FC point but 1.3 kcal/mol below the FC
different minima, Cl and STC points, calculated in vacuo and Point in solution. However, this path involves an appreciable
in solution, and in this latter case, in equilibrium and frozen reorganization of the solvent structure, as is evidenced by the
solvent conditions. Figure 4 displays the geometries of the comparison between the OO and the OH radial distribution
minima and minimal energy Cl and STC. functions for the §S Cl (dotted line in Figures 5 and 6) and
We begin by analyzing the influence of the solvent on the FC point. Like for the gas-phase process, the most probable
different geometries supposing solvent equilibrium conditions. de-excitation path passes through thg¢TS STC. This path
In all the cases analyzed, minima, MECI and MESTC, the implies also a large reorganization of the solvent structure
solvent increases the CO distance and decreases the two C@round acrolein, and hence, given the larger times of relaxation
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1.392 1.222
(1.407+0.014) (1.2244-0.001)

1.204
(1.210)

1222
(1.2240.000)

Figure 4. (a) S/Sy Cl geometry in vacuo and in solution (in parentheses). (¥ TSTC geometry in vacuo and in solution (in parentheses). (c)
Si/T1 STC geometry in vacuo and in solution (in parentheses). (), TCI geometry in vacuo and in solution (in parentheses). (e) FC geometry
in vacuo and in solution (in parentheses). (fMinimum geometry in vacuo and in solution (in parentheses). Distances in A.

TABLE 2: Dipole Moment Values in Debyes TABLE 3: Relative Free Energy (in kcal/mol) and Its
- Components in Different Points in Solution in Equilibrium
vacuum solution Conditions
SO - > 88 3 9:;3'0 04 non-eg. AEsolute AG‘solv AEint AG‘diff
min . . .
S mno 1% lowoos
S FC 1.05 1.87 ! ’ ’ ' '
T, () min 140 1.694 0.03 TJT, Cl -16.2 -4.5 +1.6 -19.1
T,¥r—7") min 288  3.90+011 W% o s1c -280  —04 83 -337
SIT, SIS Cl +1.6 7.0 +4.0 1.4
15.11 %:ié %;g% 8:% g:gg group and the water molecules; the coordination number is close
TAT, to 2. Regarding the solvent structure around the solute when
T, 1.34 1.75+0.13 1.34 this is in its singlet and triplet excited states, it depends on the
T1 2.52 2.83+0.09 2.52 type of transition involved. Im — z* transitions, an electron
TS is transferred from the oxygen lone pair to the carbon skeleton.
;; g:gg g:gﬁ 8:82 g:gg As a consequence, the watecrolein hydrogen bond weakens,
SIS and the first peak of both OO and OH radial distribution function
S 2.59 3.06+ 0.05 2.78 (rdf) is shifted outward at the same time as its height decreases.
S 1.78 2.13+0.08 3.60 The passing from the FC point to the final/S Cl implies a

partial desolvation of the carbonyl group, in fact, the coordina-

of the solvent with respect to the relaxation times of the solute, tion number decreases to 0.65. On the contrary; & 7*
one can expect equilibrium paths to be slower in solution than transition does not affect the strength of the hydrogen bond,
in vacuo. and its effect on the solvent structure is smaller.

The change of solvent structure around the solute depends Another point to emphasize is that the/S STC is very
on the nature of the excited-state considered; see Figufés 5 close in energy and geometry to the minimum of thestate,
The initial structure corresponds to the FC point, that is, to a consequently, the emission probability from this state must be
solvent in equilibrium with the charge distribution of State. very low. The weak phosphorescence band must be hence
In this state, there is a strong interaction between the carbonylassociated to the de-excitation from thestate. In vacuo, the
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Figure 5. Oxygen(acroleinyoxygen(water) radial distribution func-

tions for § minimum, T/S, STC (thick lines, continuous and dotted,

respectively), and $5 ClI (thin dotted line).
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respectively).
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calculated emission energy for this band is 2.24 eV, the
experimental value is 2.46 eV. The solvent shift is
0.73 kcal/mol, similar to that found in the fluorescence
spectrunt?
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Figure 8. Evolution during the search procedure of theehd S
energies (in hartree) in nonequilibrium conditions (thin lines, continuous
and dotted, respectively) and in equilibrium conditions (thick lines,
continuous and dotted, respectively).

0 50 200

acrolein in agueous solution could follow the same path as that
of the in vacuo system and proceed with a similar speed.

V. Conclusions

A new method to locate minimum energy points of Cl and
STC in solution has been presented. The method permits us to
combine high level quantum calculations in the solute descrip-
tion with a detailed description of the solvent structure obtained
from molecular dynamics simulations. Furthermore, the method
can be used with the solvent in equilibrium and nonequilibrium
conditions. As an example of application, we have studied the
radiationless de-excitation ofteans-acrolein which involves
several IC and ISC processes.

In acrolein, the solvent does not introduce drastic changes in
the geometries of Cl and STC points. Furthermore, the small
changes found are completely similar to those found for minima.
The solvent modifies the relative stability of the different ClI
and STC but not enough as to alter the order of stability.
Consequently, the radiationless relaxation of acrolein in aqueous
solution can follow the same path as in vacuo. This is valid
both for equilibrium and for nonequilibrium solvent conditions.
However, the relaxation through an equilibrium path involves
a strong solvent reorganization; hence, this path will be slower
than the in vacuo path. On the contrary, the nonequilibrium path
does not involve solvent motion, and the de-excitation can
proceed with the same speed as in vacuo.
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