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Abstract. Post-calculation analyses are often required to extract physical insights from ab
initio molecular dynamics simulations. In the present work, we use different machine learning
classifiers to take a new perspective on the decomposition reaction of dioxetane. Upon thermally
activated decomposition, dioxetane can form products in an electronically excited state and can
thus chemiluminesce. Simulated dynamics trajectories exhibit both successful and frustrated
dissociations. As an exhaustive and systematic study of the decomposition mechanism “by
hand” is beyond feasibility, machine learning models have been employed to study the relevant
nuclear distortions governing molecular dissociation. According to all classifiers used in the
study, the two sets of geometries differ by the in-phase planarisation of the two formaldehyde
moieties. New insights are obtained from this analysis: if both moieties are not planar
enough when the dissociation is attempted, it is frustrated and the molecule remains trapped.
The postponing of the decomposition reaction by the so-called entropic trap enhances the
chemiexcitation efficiency.

1. Introduction

Ab initio molecular dynamics simulations provide a complete picture of the evolution of the
electrons and the nuclei along a chemical reaction. However, post-calculation analyses are often
required to understand why a molecule reacts the way it does [1, 2, 3]. Recently, we have studied
the thermally-activated decomposition of dioxetane [4, 5, 1]. The reaction occurs in two steps
leading to two formaldehyde fragments: first the O–O bond breaks and then the C–C bond
breaks (Figure 1). This reaction is responsible for the non-adiabatic population of electronic
excited states, a process called chemiexcitation [6, 7]. The subsequent radiative relaxation is
called chemiluminescence, or bioluminescence when occurring in living organisms [8].

It was suggested that an “entropic trap” regulates the outcome of the dissociation (instead
of a transition state) [9]. By delaying the exothermic ground-state dissociation, the entropic
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Figure 1. Chemiluminescent (top) and dark (bottom) decomposition reactions of 1,2-dioxetane
into two formaldehydes.

trap would give the molecule time to explore other routes and access electronic excited states.
More precisely, it was recently demonstrated that the yield of chemiexcitation is determined
by the time scale of the decomposition reaction [5]: the slower the reaction, the higher the
chemiexcitation yield. Ab initio molecular dynamics trajectories that dissociate late in time
exhibit several attempts to dissociate before the final successful dissociation. We call these
attempts frustrated dissociations [4]. Understanding the yield of chemiexcitation thus relates to
understanding why some dissociations are frustrated and others are successful.

In the present work, we use statistical models frequently employed in machine learning to
analyse the data produced from ab initio molecular dynamics simulations. Based on our analyses,
physical insights into the dissociation mechanism, the entropic trap and thus the chemiexcitation
yield are extracted.

2. Theoretical methods

We will below in some details describe the specifics of the ab initio molecular dynamics that
produced the data, and the subsequent machine learning algorithms for the post-simulation
analysis.

2.1. Data

The analysis is performed on an ensemble of 250 Born-Oppenheimer trajectories, initiated
around the first transition state (corresponding to the O–O bond breaking) and heading towards
the products [10, 4]. The vibrational ground state is reproduced by sampling initial nuclear
positions and velocities (along all nuclear coordinates except the reaction coordinate) from a
Wigner distribution [11, 12]. The electronic structure is described using the complete active
space self-consistent field (CASSCF) method [13] with an active space of 12 electrons in 10
orbitals, and the ANO-RCC-VTZP basis set [14]. The dynamics simulations are performed
using the OpenMolcas package [15].

Geometries along the trajectories which correspond to local maxima in the time evolution
of the C–C bond length are assigned the label frustrated ; the largest local maximum reaches
1.76 Å. Successful geometries are geometries at which the C–C bond length reaches 1.76 Å and
keeps on increasing monotonically until successful dissociation occurs. Among the ensemble of
trajectories, 420 frustrated and 250 successful geometries are extracted, respectively.
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2.2. Machine learning algorithms

We aim to identify the nuclear distortions that distinguish best the frustrated and the successful
geometries. To do that, we suggest the use of standard machine learning classifiers to elucidate
the relevant nuclear distortions that enable the maximal distinction of frustrated and successful
geometries. In this work, we employ three different statistical models: linear discriminant
analysis (LDA), linear support vector classification (SVC) and support vector machines (SVM)
with a linear kernel.

LDA assumes that the probabilities p(x|y = 0) and p(x|y = 1) follow normal distributions
with identical covariances, and aims to identify a predictor for y by maximizing the likelihood
ratios between the two distributions [16]. Under these assumptions, the decision criterion for x
belonging to either y = 0 or y = 1 is based on a linear combination of the input features.

SVC and SVM [17] with linear kernels provide a more flexible approach to separating the
space. These models create classifiers by constructing linear combinations of the input features
and minimizing the quadratically smoothed hinge loss [18]. The two approaches used in this
study differ in their regularization and penalty terms. SVC were implemented with an L2
regularization on the learned coefficients [19] while no further penalty terms were added to SVM
classification.

The linearity of all three models simplifies the interpretation of the trained classifiers as
learned feature transformations are based on linear combinations of the provided input features.

3. Results

In this section, we will present the results on the two sets of successful and frustrated geometries
obtained from the ab initio molecular dynamics simulations. First, we will present how the
two sets compare in normal mode coordinates. Then, we will show how the machine learning
algorithms perform in separating the two sets of geometries, before finally interpreting the new
suggested nuclear coordinate.

3.1. Normal modes as starting points for nuclear coordinates

The geometries are expressed in terms of normal modes (calculated at the initial transition state
structure), which form a complete set of linearly independent nuclear coordinates. The normal
modes are numbered from 0 to 17, where 0 refers to the reaction coordinate. The relevant
normal modes are represented in a simplified manner in Figure 2.

Figure 3 presents the two sets of successful and frustrated geometries in normal mode
coordinates. The upper subplot shows the average position with the standard deviation
represented by the black line. First, we see that both sets of geometries do not show significant
average distortions along modes 2, 3, 5, 9, 10, 12, 14 and 17. Then, along most other modes, the
successful geometries show larger average distortions than the frustrated ones. The difference
between both sets of geometries is quantified by the Kolmogorov–Smirnov (KS) statistics [20]
plotted in the lower part of the figure. The modes that exhibit the largest differences between
the two sets of geometries are modes 0, 8 and 13, with a KS statistic larger than 0.5, 0.6
and 0.5, respectively. The distribution of successful and frustrated geometries along normal
mode 8 (which exhibits the highest KS statistics) is presented in Figure 4a. Normal mode 8
corresponds mainly to the planarisation of the formaldehyde moieties, with only the “inner”
hydrogen atoms moving (and not the “outer” ones). Normal mode 0 corresponds mainly to the
O-C-C-O dihedral angle while normal mode 13 corresponds mainly to the in-phase bending of
the two H–C–H angles (Figure 2).

3.2. Performance of the machine learning analysis

The three different classifiers used suggest new combined coordinates to maximally separate the
two sets of geometries. The composition of these new coordinates in terms of normal modes is
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Figure 2. Simplified representation of the relevant normal mode coordinates (calculated at
the O–O bond breaking transition state structure). Normal mode 0 corresponds mainly to the
OCCO dihedral angle while normal mode 7 corresponds mainly to the HCCH dihedral angles.

represented in Figure 5. The distributions of successful and frustrated geometries along these
combined coordinates are presented in Figures 4b-d, where the KS statistics is also indicated
for each case. Regarding the ability to separate the two sets of geometries, all three algorithms
perform very well since they reach a KS statistics higher than 0.99, indicating that the two sets
of geometries barely overlap along these new nuclear coordinates.

3.3. Interpreting the machine learning analysis

What new nuclear coordinate has been identified for the separation? Looking at the coefficients
in Figure 5, the new coordinates suggested by the three classifiers are quite similar. The angle
of the LDA coordinate vector is only 11 and 10 degrees with the linear SVC and SVM (with
a linear kernel) coordinate vectors, respectively; the angle between the two SVC and SVM
coordinate vectors is only 4 degrees. Based on a visual inspection of the new coordinate, it
mainly corresponds to the in-phase planarisation of the two formaldehyde moieties.

In all classifier cases, the normal mode with the largest amplitude is normal mode 11. Normal
mode 11 corresponds mainly to the planarisation of the formaldehyde moieties, with only the
“outer” hydrogen atoms moving and not the “inner” ones as in normal mode 8 (Figure 2). It
is noted that along normal mode 11 alone, the two sets of geometries do not differ much (KS <

0.2, see Figure 3). The second most important normal mode is mode 8, already identified as a
good separative coordinate (Figure 3).

Taking the linear SVC classifier for instance, the five most important modes (11, 8, 6, 4 and 7)
out of the 18 normal modes account for more than 90% of the suggested new nuclear coordinate.
Using only their coefficients in creating the new coordinate (and setting the others to zero) gives
a KS of 0.896. When re-optimising these five coefficients, a KS of 0.989 is obtained.

To test the robustness of the analysis procedure, we repeated the training of the linear SVC
classifier with 1.8 Å and 1.9 Å for the threshold value used to detect the successful geometries.
The angle between the two new coordinate vectors is only 7 degrees. It is on the same order
of magnitude as the angle obtained for different classifiers and it is satisfactorily small. It is
also noted that, although it might be interesting to study in detail, we do not expect the results
to depend much on the choice of initial basis of nuclear coordinates, for example when using
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Figure 3. Frustrated (red) and successful (green) geometries in normal mode coordinates. The
upper subfigure shows the average positions and standard deviations. The lower one shows the
KS statistics which quantifies the difference between both sets of geometries.

localised modes [21] instead of normal modes.

4. Conclusions and discussions

In this work, we have used three different machine learning classifiers to suggest a nuclear
coordinate that distinguishes between frustrated and successful dissociations (identified along
ab initio molecular dynamics simulations). The three algorithms perform very well in separating
the two sets of geometries and all three suggest a similar new nuclear coordinate. The latter
mainly corresponds to the in-phase planarisation of the two formaldehyde moieties.

We note that it was previously suggested that the nuclear distortions responsible for the
frustration of dissociations were a small O-C-C-O dihedral angle and large O-C-C angles [4].
The quantification of how much the two sets of geometries differ along those previously suggested
coordinates gives a KS of slightly larger than 0.2 and slightly lower than 0.5 along the O-C-
C angle and O-C-C-O dihedral angle, respectively. The machine learning classifiers are thus
much better at finding separative nuclear coordinates than humans. Also, it is interesting to
observe that none of these coordinates seem to be directly identified as important by the machine
learning classifiers. (Normal mode 7 corresponds mainly to the H-C-C-H dihedral angles, and
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Figure 4. Frustrated (red) and successful (green) geometries along (a) normal mode 8, and the
coordinates optimised with (b) LDA, (c) linear SVC and (d) SVM with a linear kernel. The KS
statistics is indicated to quantify the difference between both sets of geometries.

not the O-C-C-O angle.) The planarisation distortions must indirectly imply the reduction of
the O-C-C angles though.

The present analysis of the ab initio molecular dynamics simulations brings a fresh and
more accurate look onto the dissociation mechanism and the entropic trap. Contrary to what
was previously suggested [4], the geometrical condition that is necessary for a trajectory to
escape the entropic trap and for dissociation to be successful is the in-phase planarisation of
the two formaldehyde moities. If both moities are not planar enough when the dissociation
is attempted, the molecule remains trapped. This way, the so-called entropic trap leads to
frustrated dissociations, postponing the decomposition reaction. A chemical distortion that
would hamper the in-phase planarisation of the two formaldehyde moities may thus enhance the
efficiency of chemiexcitation. Performing the same type of analysis on excited state dynamics
might reveal complementary relevant nuclear coordinates.
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