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eDepartment of Chemistry – Ångström, The Theoretical Chemistry Programme, Uppsala University, Uppsala, Sweden; fUppsala Center for
Computational Chemistry – UC, Uppsala University, Uppsala, Sweden

ARTICLE HISTORY
Received  October 
Accepted  January 

KEYWORDS
Quantum chemistry;
Löwdin’s inner projections;
Cholesky decomposition;
density fitting; linear scaling

ABSTRACT
The density-fitting technique for approximating electron-repulsion integrals relies on the quality of
auxiliary basis sets. These are commonly obtained through data fitting, an approach that presents
some shortcomings. On the other hand, it is possible to derive auxiliary basis sets by removing ele-
ments from the product space of both contracted andprimitive orbitals bymeans of a particular form
of inner projection technique that has come to be known as Cholesky decomposition (CD). This pro-
cedure allows for on-the-fly construction of auxiliary basis sets that may be used in conjunction with
any quantum chemical method, i.e. unbiased auxiliary basis sets. One key feature of these sets is that
they represent the electron-repulsion integralmatrix in atomic orbital basis with an accuracy that can
be systematically improved. Another key feature is represented by the fact that locality of fitting coef-
ficients is obtained even with the long-ranged Coulomb metric, as result of integral accuracy. Here
we report on recent advances in the development of the CD-based density fitting technology. In par-
ticular, the implementation of analytical gradients algorithms is reviewed and the present status of
local formulations – potentially linear scaling – is analysed in detail.

1. Introduction

Per-Olof Löwdin left a monumental legacy for the
advance of understanding in quantum chemistry. Among
its contributions, the study of inner projections of

CONTACT Roland Lindh roland.lindh@kemi.uu.se

positive-definite operators spans over several of his
publications and has led to important results especially
in the context of perturbation theory. At the same time,
one possible use of inner projections in quantum chem-
istry that seems to have escaped Löwdin’s attention [1]
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was instead brought to light by one of his former students.
Jan Linderberg, in collaboration with Nelson H. F. Beebe,
published in 1977 a paper [2] entitled ‘Simplifications
in the Generation and Transformation of Two-Electron
Integrals inMolecular Calculations’ that would go almost
unnoticed for the next two decades or more. The paper
showed how inner projection of the Coulomb operator
could be used in order to reduce the number of electron
repulsion integral (ERIs) that need to be calculated. The
idea exploits the presence of numerical linear dependen-
cies among the columns of the ERI matrix and results in
an algorithm that is in all respects a form of incomplete
Cholesky decomposition of the ERI matrix. Despite spo-
radic attempts [3–5] to further develop the idea of Beebe
and Linderberg, what is now known as Cholesky decom-
position (CD) approximation to the two-electron inte-
grals seemed to be destined to stay a forgotten method at
the bottomof the quantumchemistry toolbox. The break-
through arrived in 2003 with a paper by Koch et al. pre-
senting the first fully fledged implementation of the CD
approximation within Hartree–Fock (HF) and second-
order Møller–Plesset perturbation theory (MP2) [6].

Since this first general implementation, the CD
approximation has been used in many computa-
tional chemistry studies [7–24], and it is now avail-
able within several quantum chemistry packages for
a wide range of electronic structure methods, includ-
ing density-functional theory (DFT) and HF [6,25,26],
multiconfigurational second-order perturbation theory
(CASSCF/CASPT2) [27–29], multireference configura-
tion interaction [30–33], MP perturbation theory [6,34–
36], coupled cluster (CC) theory [37–40], electron
propagator methods [41], symmetry-adapted perturba-
tion theory [42], fragment molecular orbital theory [43]
and quantumMonte Carlo [44].

The use of CD-based algorithms has made possible
nowadays calculations at the correlated level with thou-
sands of basis functions [45]. and for systems with up to
hundreds of atoms through the use of the Local Exchange
(LK) screening algorithm [25] and the localised Cholesky
orbital basis [46]. Moreover, the cost of correlation meth-
ods can be reduced even further by invoking the frozen
natural orbital (FNO) approximation [47–50]. In the con-
text of the FNO approximation, we have employed CD of
the molecular orbital (MO) ERIs to effectively compute a
correlated density matrix from which a spectral decom-
position is used to reduce the size of the secondary orbital
space with no significant loss of accuracy [51,52].

In this wave of revived interest for the pivotal idea of
Beebe and Linderberg, a major shortcoming of the orig-
inal formulation of the CD method has been eliminated
that allows for the formulation of analytical gradients. For
many years, the CD approximation was in fact thought

as a purely numerical technique to represent the inte-
gral matrix through a tensor product. When computing
energy gradients, O’Neal and Simons [4] attempted to
perform a CD of the supermatrix that includes derivative
integrals in addition to the ERIs, hence remaining in the
framework of a numerical approach to the problem. For-
tunately, a truly analytical gradient formulation became
possible after it was recognised that CD approximation
is a particular type of density fitting (DF) approximation
to the ERIs in which the auxiliary basis set is generated
from the set of atomic orbital (AO) product densities [53].
Presently, analytical gradients are available for a variety of
ab initio wave function and DFT methods, showing sim-
ilar speed-ups as for the energy calculation, while hardly
affecting the computed equilibrium structures. These lat-
est developments have been of particular impact in pho-
tochemistry, where CD-based multiconfigurational wave
function methods can now be used to optimise excited-
state structures and photochemical reaction paths thanks
to the availability of energy gradients and non-adiabatic
coupling vectors.

The standard DF technique for approximating ERIs
relies on the quality of auxiliary basis sets that are
obtained through data fitting and are usually biased
towards specific types of quantum chemistry meth-
ods and problems – thermodynamic energy differences,
valence or core excited states, etc. With the proof of the
equivalence between the DF and the CD paradigms for
ERI approximation, not only became possible to com-
plement the CD approximation with analytical proper-
ties, but at the same time the DF idea was freed from
the need to use pre-optimised auxiliary basis sets. In fact,
the removal of linear dependence in the product space of
both contracted and primitive orbitals allows for on-the-
fly construction of auxiliary basis sets that may be used
in conjunction with any quantum chemical method, i.e.
unbiased auxiliary basis sets. The use of such ‘Cholesky
basis’ effectively defines an ab initio DF approximation
with nearly complete error control as well as intrinsic
locality that can be exploited towards the formulation of
linear-scaling algorithms.

2. Inner projection of the Coulomb operator

Given a positive definite operatorV and a projectorPonto
a subspace in the domain of V, the following mathemati-
cal properties hold

V = V 1/2V 1/2 � V 1/2PV 1/2 � 0, (1)

where V1/2 denotes the positive square root of V and the
inequalities are to be understood in the expectation value
sense of Löwdin [1]. A new operator Ṽ = V 1/2PV 1/2 –
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Figure . Carbon atom. Number of linearly independent functions h̃ at different CD thresholds (τ ). The total number of product densities
h in each aug-cc-pVXZ basis is reported for comparison.

the inner projection of V with respect to P – can then be
defined that provides a lower bound to the initial operator
V.

For the purpose of using the inner projection of Equa-
tion (1) in the context of ERIs approximation, we start by
mapping the product densities χμχν , where χ are atomic
basis functions, onto a set of one-index functions hK. A
new set of functions h̃J can be obtained by the following
Gram–Schmidt orthogonalisation:

h̃J = hJ −
J−1∑
K=1

h̃K
〈h̃K |V |hJ〉

〈h̃K |V |h̃K〉1/2
(J = 1, . . . ,M).

(2)

The above set of functions constitutes a basis for a projec-
tor operator defined as

P = V 1/2 |h̃〉 〈h̃|V |h̃〉−1 〈h̃|V 1/2, (3)

onto which to form the inner projection of V as follows:

Ṽ = V |h̃〉 〈h̃|V |h̃〉−1 〈h̃|V. (4)

The matrix elements of Ṽ are then obtained from (4) as

〈hI|Ṽ |hK〉 =
M∑
J=1

〈hI|V |h̃J〉
〈h̃J|V |h̃J〉

1/2
〈h̃J|V |hK〉

〈h̃J|V |h̃J〉
1/2 =

M∑
J=1

LJIL
J
K .

(5)

The orthogonalisation (2) is continued until the sub-
traction produces negligibly small diagonal elements

〈hI|Ṽ |hI〉, which arises if the functions h are nearly lin-
early dependent, hence the number M of functions h̃
is always smaller than the total number N(N + 1)/2 of
unique product densities h in an AO basis composed of
N functions. In typical cases, the resulting value for M
is in the range 3N–5N and scales linearly with the num-
ber of AO basis functions N, as shown in the example
of Figure 1. Moreover, Equation (5) is equivalent to the
corresponding CD of the matrix V continued untilM so-
called Cholesky vectors L have been generated [13,53].
Finally, due to the inner product nature of the approxi-
mation, thematrix regenerated by the Cholesky vectors is
actually thematrix representation of Ṽ , whichmeans that
the expectation values computed from these two-electron
integrals will be lower bounds to the results obtained
using the original matrix elements.

3. The ‘density fitting/resolution of identity’
point of view

The idea behind DF is to approximate the AO product
densities with a linear expansion on a set of auxiliary basis
functions χK = |K〉:

χμχν = |μν〉 ≈ |μ̃ν〉 =
∑
K

|K〉CK
μν. (6)

To this aim, one starts by defining a suitable error func-
tion for the approximation, of the type

�μν =
(

χμχν −
∑
K

CK
μνχK

∣∣ĝ∣∣χμχν −
∑
K

CK
μνχK

)
,

(7)
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which is in fact a measure of the ‘distance’ (in Hilbert
space) between the fitted and the target product densities,
defined through a given positive definite metric ĝ. Min-
imisation of the above function leads to the set of linear
equations for the expansion coefficients:∑

I

GIKCI
μν = 〈μν|K〉g , (8)

where GIK = 〈I|K〉g and 〈·|·〉g = (·|ĝ|·). The Coulomb
metric, ĝ = r−1

12 , gives the most accurate representation
of the ERIs [54,55] and it is, therefore, the most common
choice for the metric. In this case, ERIs can be expressed
in a form that is reminiscent of a resolution of the identity
(RI), namely

(μν|λσ ) ≈ ˜(μν|λσ ) =
∑
IK

CI
μν(I|K)CK

λσ

=
∑
IK

(μν|I)(I|K)−1(K|λσ ), (9)

from which comes the name ‘RI approximation’ often
employed for the DF approximation to the ERIs. (Note
that we have used the common but somewhat misleading
short-hand notation (I|K)−1 which is intended to mean
(W−1)IK with WIK = (I|K).) Still within the choice of
the Coulomb metric, the solution of Equation (8) leads
to a well-defined measure of the error introduced by the
DF/RI approximation:

�min
μν = (μν|μν) −

∑
IK

CI
μν(I|K)CK

μν. (10)

The quantity�min
μν measures the error in representing the

diagonal element of the ERI matrix, indicating that an
externally defined auxiliary basis set will in general not
lead to the global minimum for the DF variational con-
dition, Equation (7). As �μν is nonnegative, the global
minimum is zero and is reached only when the auxiliary
basis set spans the same space as the product densities
χμχν . The ERI matrix is then represented exactly by the
DF approach.

Standard auxiliary basis sets are chosen to be Gaus-
sian functions centred on the nuclei. The number of aux-
iliary basis functions scales, therefore, linearly with sys-
tem size and the computed electronic energy ramains
a continuous function of the nuclear positions. These
auxiliary basis sets have been optimised to reproduce,
within an allowed error span, some specific quantities
(e.g. Coulomb energy, MP2 correlation energy correc-
tion, etc.) for each valence basis set by minimisation of
the energy errors in a set of atomic calculations [56–59].
Since such optimisation is performed without any direct

constraint regarding the representation of the integral
diagonals, as measured by Equation (10), the resulting
basis set cannot be used to approximate the ERI matrix
without major concerns. This is an important issue but
is often overlooked as, for instance, is the problem of
the intrinsic higher difficulty in fitting exchange or MP2
energy compared to the Coulomb energy. We can view
this problem in terms of the matrices that need to be
accurately represented when approximating the different
energy contributions in a spin-compensated formulation.
ForMP2, it is the occupied-virtual block (ia|jb) of the ERI
matrix inMObasis. ForCoulomb (EC) and exchange (EX)
energies we have, respectively:

EC = 2
∑
i j

(ii| j j) EX = −
∑
i j

(i j|i j), (11)

where the orbital indices belong to the occupied space
only. It is immediate to recognise that the Coulomb
matrix is exactly representable by at most O auxiliary
functions (Cholesky vectors) in MO basis, whereO is the
number of occupied orbitals. Already for the exchange
matrix, this limit is instead O2 and becomes OV for the
integrals needed in MP2, with V being the number of
virtual orbitals. The success in reproducing Coulomb
energies by externally optimised auxiliary basis does not
imply a similar fate for these other quantities. In partic-
ular, there is a fundamental inconsistency in trying to
fit directly the (ij|kl) and (ai|bj) quantities using atom-
centred auxiliary functions: the number of significant
product densities in (canonical) MO basis, |i j〉 or |ai〉,
scales quadratically with the size of the molecule while
the auxiliary basis by definition will scale only linearly!
This inconsistency is not present in fitting the Coulomb
energy since the number of |ii〉 scales linearly too. The
only way to ensure a consistent fit of these quantities by
atom-centred auxiliary functions is indeed by producing
an accurate fit of the AO ERI matrix. Once this condition
is fulfilled, any quantity in MO basis will be reproduced
with the same accuracy since it is derived through alge-
braic manipulations from the corresponding one in AO
basis. Since in AO basis the number of significant prod-
uct densities χμχν does scale linearly with the size of the
system, the inconsistency disappears.

On the other hand, if we consider an isolated atom, the
CD of its ERI matrix [2] provides an upper bound for the
value of �min

μν , Equation (10),

�min
μν = (μν|μν) −

∑
J

(
LJμν

)2 ≤ τ, (12)

where LJμν are the Cholesky vectors and τ is the decom-
position threshold. From Equation (2), we identify the
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Figure . Benzene molecule, cc-pVTZ basis set: average and maximum error in the approximation of the AO diagonal ERIs with various
types of DF approximations. The notation aCD-n is used to indicate an auxiliary basis set generated by CD of atomic ERIs with a threshold
τ = −nEh. Auxiliary basis ‘RI-J’ as in Eichkorn et al. [] and ‘RI-C’ as in Weigend et al. [].

‘Cholesky basis’hK’s through atomicCDs (aCDs) for atom
A, B, …. Hence, we obtain an auxiliary basis set for
DF approximation to the molecular ERI matrix, but one
for which there is strict error control on the one-centre
and two-centre ‘Coulomb’ ERIs, namely the integrals of
the type (AA|AA) and (AA|BB), respectively. This can be
understood by considering the fact that the DF approxi-
mation is an inner projection and therefore, the following
Cauchy–Schwarz inequality holds:

∣∣�min
μν,λσ

∣∣ =
∣∣∣∣∣(μν|λσ ) −

∑
IK

CI
μν(I|K)CK

λσ

∣∣∣∣∣ ≤ �1/2
μν �

1/2
λσ .

(13)

From Equations (12) and (13), we can see that the errors
in the DF approximation to the ERIs of the type (AA|AA)
and (AA|BB) are bound by the aCD threshold τ , whereas
those of the type (AB|**) may be affected by larger errors.
In Figure 2, it is clearly shown how these errors are
nonetheless much smaller than those arising from stan-
dard auxiliary basis sets [56–59] tailored specifically for
Coulomb contributions (RI-J) [60] and MP2 contribu-
tions (RI-C) [58] to the energy. The robustness of the
aCD-based DF approximation has been further estab-
lished in a number of benchmark studies [61–63].

The quality of such aCD auxiliary basis set is con-
trolled by the aCD threshold, thus defining a hierarchy
of sets by varying the threshold. This also implies that
contrary to the standard auxiliary basis sets, the aCD
sets are generated on-the-fly rather than stored in a stan-
dard basis set library format. Consequently, aCDs are by
way of construction available for any atom type and AO

basis set. Finally, as they are derived ab initio by ensur-
ing upper bounds on the DF error function of Equation
(10), the unbiased nature of the resulting DF approxima-
tion is guaranteed [28,63]. From a practical point of view,
a raw aCD auxiliary basis set does not have the structure
of complete shells and therefore they are not spherically
balanced. This is somewhat incompatible with standard
integral code implementations. This problem is circum-
vented by adding auxiliary functions to get a complete
shell structure at the price of slightly increased compu-
tational costs associated with the subsequent use of the
DF representation. Another drawback of the aCDs com-
pared to standard auxiliary basis sets is the large num-
ber of primitive functions. This problem is eliminated by
exploiting the linear dependence in an atomic ERImatrix
constructed in the primitive basis. This is a natural exten-
sion of the principle underlying the aCD auxiliary basis
sets, and defines the atomic compact CD (acCD) class of
auxiliary basis sets [64], The acCD sets achieve virtually
the same level of accuracy as the corresponding aCD sets,
but require only a fraction of the primitive space needed
by the latter. This is particularly important for regular
basis sets constructed as contractions of large primitive
sets, such as the atomic natural orbital (ANO) class of reg-
ular basis sets.

4. Local fitting with Cholesky decomposition

Solving the linear equations (8) requires an effort that
scales cubically with system size. However, a very low
prefactor is achieved by CD rather than explicit inversion
of the symmetric positive definite metric matrix G and
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other computational tasks dominate for all but the very
largest systems. Among such tasks, one of the most chal-
lenging is the evaluation of the exact-exchange matrix in
single- as well as multireference calculations. The exact-
exchange matrix is given by

Kμν =
∑
λσ

(μλ|νσ )Dλσ , (14)

where D is a one-electron density matrix. With D dense,
exact-exchange evaluation scales quadratically with sys-
tem size. If the number of non-zero elements in D scales
linearly, as is the case for wide-gap insulators, the exact-
exchange matrix can be evaluated in linear time [65,66],
albeit with a computational prefactor and an onset to lin-
ear scaling that both grow rapidly with basis set quality
(i.e. basis set size per atom).

While the prefactor can be reduced with the RI tech-
nique [59], it becomes impossible to achieve linear scaling
with system size when the most accurate Coulomb met-
ric is used. Even if density-matrix sparsity is exploited, the
best possible scaling is quadratic [25]. The reason for this
behaviour is the expansion of all local AO product densi-
ties in a delocalised auxiliary basis, making the expansion
coefficients determined by the linear equations (8) decay
slowly in general, even as slowly as the Coulomb opera-
tor itself [55,67]. Consequently, different approaches have
been proposed to reduce the scaling. These approaches
fall in two overall but not disjoint categories: local met-
ric fitting and local domain fitting. Local metric fitting
forces the expansion coefficients to decay more rapidly
through the use of a short-rangedmetric [55,67,68], while
local domain fitting achieves the same by restricting the
expansion to auxiliary functions in a chosen vicinity of
each local AO product density [69–73]. Combinations of
local metric fitting and local domain fitting have been
proposed, too [74,75].

Since neither of the two categories of local fitting can
be recast as a proper inner projection of the Coulomb
operator, strict integral-error control is lost in general. It
is possible to restore, at least partially, error control by
using Dunlap’s robust fitting formula in place of Equation
(9) [76],

˜(μν|λσ ) = (μ̃ν|λσ ) + (μν|λ̃σ ) − (μ̃ν|λ̃σ ). (15)

This ensures that the integral error is bilinear in the fitting
error

(μν|λσ ) − ˜(μν|λσ ) = (μν − μ̃ν|λσ − λ̃σ ), (16)

and, in the Coulomb metric, provides us with an upper
bound to the integral error

∣∣(μν − μ̃ν|λσ − λ̃σ )
∣∣ ≤ �1/2

μν �
1/2
λσ , (17)

since each ‘distance’ �μν is then minimised for a given
auxiliary basis. Strict error control is only guaranteed if
the auxiliary functions span the same space as the AO
product densities to within a small tolerance τ � 0 such
that �μν � τ for all μν.

Robust fitting suffers from onemajor drawback: Equa-
tion (15) is not unconditionally positive semidefinite,
occasionally resulting in spurious attractive interactions
among the electrons, which causes convergence prob-
lems in self-consistent field solvers or even convergence
to an unphysical solution [77]. In actual calculations, the
lack of positive semidefiniteness reveals itself inmuch too
low, often negative, two-electron energies. This can be
understood in the followingmanner.With a given density
matrix or, equivalently, a given space of occupied orbitals,
the difference between the direct Coulomb energy calcu-
lated with exact and approximate integrals is strictly non-
negative [78],

EC − ẼC = 2
∑
i j

(ii − ĩi| j j − j̃ j) ≥ 0. (18)

While EC = 2�ij(ii|jj) � 0, ẼC may be negative due to
negative eigenvalues of the approximate integral matrix
˜(ii| j j) without violating the inequality above. Varia-
tional calculations aim to minimise the energy and thus
may lead to a formally valid density matrix with associ-
ated negative two-electron energy. The exchange energy
behaves differently; the difference between the exchange
energy calculated with exact and approximate integrals is
strictly nonpositive [79],

EX − ẼX = −
∑
i j

(i j − ĩ j|i j − ĩ j) ≤ 0. (19)

Hence, ẼX ≥ EX for any given density matrix, and varia-
tional instabilities do not occur due to this contribution.
In conclusion, Dunlap’s robust fitting should only be used
with great care for Coulomb contributions but may be
used with impunity for exchange contributions.

We now return to the problem of slow decay of the
expansion coefficients obtained from Equation (8) in the
Coulomb metric. To appreciate the underlying problem,
we first study a generalised example. Suppose thatwe have
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Figure . He–CH system. Decay of the largest contaminant (CB) of the fitting coefficients on He atom as function of the point–plane
distance r between He atom and benzene molecule. Logarithmic scale is employed for the vertical axis. The AO basis set used for He is
cc-pVTZ whereas a cc-pVDZ basis set is used for the atoms of the benzene molecule. Auxiliary basis ‘RI-C’ as in Weigend et al. [].

expanded a set of functions | f 〉, known to be (near-) lin-
early dependent in a positive definite metric ĝ, in a lin-
early independent set |A〉, i.e.

| f 〉 ≈ | f̃ (0)〉 = |A〉C(0)
A , (20)

where the coefficients are determined from Equation (8)
as

C(0)
A = 〈A|ĝ|A〉−1〈A|ĝ| f 〉. (21)

Next, suppose we extend the auxiliary basis to include
another set |B〉 such that

| f 〉 ≈ | f̃ 〉 = |A〉CA + |B〉CB. (22)

In this case, the fitting equations (8) yield the coefficients

CA = C(0)
A − 〈A|ĝ|A〉−1〈A|ĝ|B〉CB, (23)

CB = [〈B|ĝ|B〉 − 〈B|ĝ|A〉〈A|ĝ|A〉−1〈A|ĝ|B〉]−1

×〈B|ĝ| f − f̃ 0〉. (24)

Evidently, CB �= 0 in general. In the context of RI, this
result implies that auxiliary basis functions far away from
the AO product density will contribute significantly to
the fit, even if the original local expansion (20) is suffi-
ciently accurate for all practical purposes. The exact decay
of the coefficients generally depends in a complicated

manner both on the metric and on the dimensionality of
the auxiliary basis and is hard to predict in real-life appli-
cations [67]. However, Equation (24) directly suggests the
obvious solution: if the auxiliary set |A〉 is locally com-
plete, i.e. spans the same space as the target functions | f 〉,
then | f − f̃ 0〉 = 0 so that no extension of the auxiliary
basis will change the fit: CB = 0 and CA = C(0)

A regard-
less of distance. As discussed previously, CD provides a
route to locally complete auxiliary sets by removing linear
dependence among the target functions in a given met-
ric and may thus be viewed as inherently local [13,64,77].
In Figure 3, we see an example of such ‘locality from
completeness’ of the aCD auxiliary basis sets: at vari-
ance with standard RI-C and similar basis sets, long-
range contaminants in Cholesky-based approximations
can be smoothly eliminated by lowering the decomposi-
tion threshold, independently of the geometry of the sys-
tem and the nature of the metric chosen.

We shall now examine the most local form of
RI, known as the pair-atomic resolution-of-the-identity
(PARI) method [77]. Let {μAνB} denote the set of AO
product densities where the AOs are centred on atoms
A and B as indicated by the subscripts. The number of
such sets scales linearly with system size, since μAνB →
0 exponentially as the distance between atoms A and B
increases. For each overlapping atompairAB, we can now
fit the AO product densities in a Cholesky basis obtained
by incomplete CD of the ERI pair-atomic diagonal block
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(AB|AB) with threshold τ ,

|μAνB) ≈ |μ̃AνB) =
∑
I∈AB

|I)CI
μAνB

. (25)

By construction of the auxiliary basis, the integral error is
bounded from above according to∣∣∣(μAνB|λAσB) − (μ̃AνB|˜λAσB)

∣∣∣ ≤ τ, (26)

for each atom pair AB. Strict integral-error control is
achieved through the robust integral formula (15), i.e.∣∣∣(μAνB − μ̃AνB|λCσD − ˜λCσD)

∣∣∣ ≤ τ, (27)

and the problems associated with negative eigenvalues
disappear with small enough τ [77], since

τ −→ 0 ⇒ (μ̃AνB|λCσD) + (μAνB|˜λCσD)

−(μ̃AνB|˜λCσD) −→ (μ̃AνB|˜λCσD), (28)

which is a positive semidefinite matrix by construction.
The PARI method thus becomes exact with the Cholesky
basis as τ → 0.

There are, however, substantial problems associated
with this approach. The Cholesky basis is composed of
products of AOs centred on different atoms and thus
becomes a function of atomic positions. First of all, this
feature may result in potential-energy-surface discon-
tinuities, although these must become insignificant as
the threshold is decreased (continuity is, of course, fully
restored at τ = 0). Second, usingAOproducts as auxiliary
functions implies that expensive four-centre ERIs must
be evaluated, thus annihilating one of the main computa-
tional advantages of the RI approach. For these reasons,
the PARI approach is normally formulated as an expan-
sion in atom-centred auxiliary functions [77]

|μAνB) ≈ |μ̃AνB) =
∑
I∈A∪B

|I)CI
μAνB

, (29)

where the summation restriction ismeant to imply that |I)
is centred on either atom A or atom B. The atom-centred
auxiliary functions may be chosen freely, although the
choice decisively impacts both accuracy and precision
of the results. Choosing the aCD or acCD auxiliary
sets obtained with a given threshold τ , this formulation
guarantees the accuracy of integral blocks of the types
(AA|AA) and, provided the robust integral formula (15)
is used, (AA|BB) – all other integral blocks typically have
errors significantly greater than τ and, more importantly,
these errors can not be reduced by decreasing τ . It is
still possible to restore strict integral-error control by

adding to the auxiliary basis, for each atom pair individ-
ually, those linearly independent AO products that are
not spanned (to within a specified target accuracy) by
the atom-centred auxiliary functions. Even this approach
turns out to require too many four-centre ERIs to be of
general practical interest, however.

The accuracy and computational performance of the
robust PARI method has been rather well tested over the
past few years [77,79–82]. Although these investigations
all employ standard auxiliary basis sets rather than aCD
and acCD, we note that using the latter is unlikely to alter
the conclusions dramatically. The tests include total and
relative energy errors obtained within HF, hybrid DFT
and range-separated hybrid DFT methods. The earlier
tests use the PARI approach for both the Coulomb and
exchange contributions [77,80], whereas the most recent
tests use the PARI method only for the exchange con-
tribution to circumvent convergence issues due to the
loss of positive semidefiniteness [79,81,82]. Convergence
issues are rare, occurring in about 1% of the cases where
the PARI method is applied to the Coulomb contribu-
tion [77,80], and occurrences can be further reduced, but
not completely removed, using larger auxiliary basis sets
in conjunction with the semi-exact PARI modification of
Hollman et al. [80] in which all diagonal blocks of the
ERI matrix are treated exactly. It is worth noting that
the semi-exact PARI approach yields total-energy errors
well below those observed with the (full) RI approach.
Although total-energy errors are somewhat greater and
more spread with robust PARI than with RI and other
well-established approximations, satisfactory results are
obtained for energy differences such as atomisation ener-
gies and reaction energies.

It is also clear, however, that while the robust PARI
method is faster than the RI method, it does not accel-
erate the calculation of the exchange contribution suffi-
ciently to be comparable with the Coulomb contribution
computed using RI [82]. The main bottleneck is the cal-
culation of terms involving the three-centre ERIs of the
robust formula (15). Considering also the loss of positive
semidefiniteness, it becomes attractive to use the non-
robust formula (9) within the PARI method. This, how-
ever, requires auxiliary basis sets that are close to locally
complete to be successful. The nonrobust PARI approxi-
mation, though not thoroughly investigated with Gaus-
sian basis sets, has been proven useful with numerical
basis set [83]. To achieve the flexibility required in the
auxiliary basis set to make the nonrobust PARI method
usable, whilst insisting on atom-centred functions, Ihrig
et al. [83] employ a philosophy reminiscent of the aCD
and acCD sets. For the sole purpose of generating an
atom-centred auxiliary basis set, they first add an addi-
tional set of functions, including high angular momenta
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functions, to the regular basis set, followed by removal
of linearly dependent functions in the set of AO prod-
ucts obtained from the extended regular basis on the atom
in question. This maintains the accuracy of atomic inte-
gral blocks and significantly improves the accuracy of
atom pair blocks, which implies accuracy improvements
in all ERI blocks. It should be possible to apply this idea
to Gaussian basis sets too – work along these lines is in
progress in our labs.

5. Analytical gradients in Cholesky
decomposition-based quantum chemistry

The usefulness and appeal of any quantum chemistry
technique increases significantly if a practical way to
compute analytical derivativeswith respect to nuclear dis-
placements is available. This opens the door to using the
tool for an efficient exploration of potential energy sur-
faces: geometry optimisation of minima and transition
states, molecular dynamics, etc.

The initial formulations of the CD technique were
a purely numerical approximation to the ERI matrix,
whichmade defining analytical derivatives a difficult task.
O’Neal and Simons [4] proposed applying the CD to
an extended positive semidefinite matrix that includes
undifferentiated and differentiated integrals. Since most
of the first derivative AO product functions belong to the
space spanned by the undifferentiated products, the num-
ber of Cholesky vectors is not much larger than in the
standard undifferentiated decomposition. But when the
connection between CD andDFwas identified, it became
possible to directly calculate the exact analytical deriva-
tives of the approximate integrals, instead of an approxi-
mation to the exact integral derivatives.

With the two-electron integrals approximated as in
Equation (9), there are several dependencies on the
nuclear coordinates to consider. First, there is an explicit
dependence of the auxiliary basis functions, coming from
the fact that the primitive functions they are built on are
typically centred on the atomic nuclei. Second, the fit-
ting coefficientsCK

μν are also dependent on the geometry.
And finally, the number and type of auxiliary functions
included in the summation are subject to change with the
molecular structure too.

The second dependence is only apparent, as the two-
electron integrals can be expressed only in terms of two-
and three-centre integrals involving auxiliary functions
(Equation (9)), and thus the derivatives of the fitting coef-
ficients are not required. Moreover, when an externally
defined auxiliary basis set is used, the third dependence
disappears, since the auxiliary functions are fixed. But if
an on-the-fly auxiliary basis set is generated through CD,
it is problematic to treat rigorously and can in fact lead

to discontinuities in potential energy surfaces. Although
the difficulty can be reduced by allowing only one-centre
product functions in the Cholesky basis and with a small
enough decomposition threshold [53], it can be strictly
removed by using one of the atomic variants of the
Cholesky decomposition, aCD or acCD. Indeed, in these
variants the auxiliary basis functions are derived exclu-
sively from the atomic blocks of the ERI matrix and are
therefore independent of the molecular geometry, leav-
ing only the explicit dependence of the integrals to take
care of.

Thus, with fixed one-centre auxiliary functions (exter-
nal or CD), the first derivative of the density-fitted ERIs
can be evaluated analytically:

˜(μν|λσ )
(1) =

∑
K

CK
μν(K|λσ )(1) +

∑
K

CK
λσ (K|μν)(1)

−
∑
KL

CK
μν(K|L)(1)CL

λσ , (30)

involving only the derivatives of two- and three-centre
integrals and the fixed coefficients CK

μν . But simply using
Equation (30) to evaluate two-electron integral deriva-
tives would provide little gain, if any, over an integral-
direct scheme where integral derivatives (μν|λσ )(1) are
computedwhen needed. The actual improvement isman-
ifested when the expression is carried over to the two-
electron contribution to the total molecular gradient.
This contribution can in general be expressed as:

E(1)
2 =

∑
μνλσ

deffμνλσ (μν|λσ )(1), (31)

where deff is an effective two-particle density matrix
whose exact definition depends on the method used
to calculate the energy. Substituting Equation (30) into
Equation (31) gives:

E(1)
2 = 2

∑
Kμν

PK
μν(K|μν)(1) −

∑
KL

PKL(K|L)(1), (32)

where PKL and PK
μν are elements of the effective two- and

three-index density matrices, respectively, given by:

PKL =
∑
μνλσ

deffμνλσC
K
μνC

L
λσ (33)

PK
μν =

∑
λσ

deffμνλσC
K
λσ . (34)

For a HF wave function, the two-particle density
matrix can be defined in terms of the one-particle density
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matrix D, readily giving Coulomb and exchange contri-
butions:

deffμνλσ = dμνλσ = DμνDλσ − 1
2
DμσDνλ. (35)

As is the case for the energy evaluation, computing the
Coulomb contribution is straightforward, but for the
exchange additional manipulations are needed to avoid
four-index summations [84]. The resulting algorithm
has a still unfavourable scaling, and a technique based
on the LK (local exchange) screening devised for the
exchange contribution to the Fock matrix [53] can be
used to identify the pairs of orbitals that contribute sig-
nificantly to the energy gradient and skip all other (neg-
ligible) contributions. In this way, by taking advantage
of the sparsity of the density matrix for sufficiently large
systems, a quadratic scaling (instead of quartic) can be
achieved [84].

In the case of a state-average complete active space self-
consistent field (SA-CASSCF) wave function, the calcu-
lation of analytic energy gradients is based on solving a
set of linear equations to obtain the Lagrange multipliers,
which are then used to compute the effective one- and
two-particle density matrices, Deff and deff [85,86]. The
two-particle density matrix cannot be expressed as com-
pactly as Equation (35), but it can still be decomposed
as [87]:

dμνλσ = dAμνλσ + DD
μνD

B
λσ + DB

μνD
D
λσ

−1
2

(
DD

μσD
B
νλ + DB

μσD
D
νλ

)
, (36)

wheredA is the two-particle densitymatrix involving only
the active orbitals; DD is a one-particle density matrix
constructed, in MO basis, with 2 in the inactive diago-
nal and zero elsewhere; DB is obtained subtracting half
the inactive part (DI) from the total one-particle den-
sity matrix: (DB = D − 1

2D
I). The distinction between

DD and DI becomes important when computing nona-
diabatic coupling vectors instead of gradients, since in
this case the density matrices to use are transition density
matrices, where the inactive part is zero, but the definition
of DD still holds. As for HF, Coulomb and exchange con-
tributions can be identified, plus an active-only contribu-
tion. This latter contribution does not benefit from LK
screening, but due to the usually small size of the active
space, it normally does not represent a significant over-
head [86,88].

In systems of medium-large size, the manipulation
of the density matrices, especially for the exchange and
active contributions, can become the most expensive
part of computing molecular gradients, a situation any
local fitting scheme would resolve. This is shown for
a very simple test (series of linear alkanes CnH2n + 2 at
random conformations, HF/ANO-RCC-VDZP energies
and gradients) in Figure 4. For both conventional inte-
grals and acCD integrals, the figure shows the total

Figure . Timings for gradient calculations at HF/ANO-RCC-VDZP level of a linear alkane series, CnHn + . Calculations with acCD and
conventional (‘conv.’) integrals. In the total CPU time, the energy evaluation and undifferentiated integrals generation are included. The
other lines refer to the density matrix manipulation and the computation of the integral derivatives.
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CPU time spent on a .full gradient calculation (includ-
ing undifferentiated integrals, HF energy and gradient),
as well as the two main tasks in the gradient: density
matrix manipulation and integral derivatives. The total
time is about one order of magnitude lower with acCD.
The reduction of time spent in integral derivatives is even
larger. Although the work on the density matrix manipu-
lation increases substantially, the combined performance
is still beneficial for the acCD calculations.

6. Conclusions and outlook

CD of the ERIs is a form of inner projection à la Löwdin
that seeks a tensor-decomposition of the ERIs by elim-
inating linear dependencies in the AO product space.
Here, we have reviewed some of the quantum chemistry
technology that can arise from the development of theCD
idea. In particular, we have pointed out the possibilities
for state of the art applications due to recent advances in
the implementation of CD-based analytical gradients as
well as local formulations.

However, the generality of the method would suggest
that the same technique applied to other contexts than
the ERI matrix could provide comparable computational
advantages, for instance as means to recognise and elim-
inate redundancies in the number of parameters used to
describe the N-electron wave function. If this is the case,
a consistent reduction in the computational costs of any
correlated method could be achieved by simply recast-
ing the working equations in a reduced space of parame-
ters. Work in this direction is currently carried out by the
present authors.

Finally, further development along the lines of local
fitting has to be explored to utilise the full potential of
the inner projectionmethod on efficient handling of two-
electron integrals.
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